Vulkan: improve mul_mat_vec_iq1_m (#16907)

* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
This commit is contained in:
lovedheart 2025-12-07 18:40:42 +01:00 committed by GitHub
parent 0a540f9abd
commit 08f9d3cc1d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 68 additions and 18 deletions

View File

@ -7,35 +7,85 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows) { void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i,
const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
// Compute starting index in matrix B for this superblock
const uint y_idx = i * QUANT_K + 32 * ib32; const uint y_idx = i * QUANT_K + 32 * ib32;
uint ibi = a_offset / QUANT_K + first_row * num_blocks_per_row + i; uint ibi = a_offset / QUANT_K + first_row * num_blocks_per_row + i;
// Precompute indices for quantization lookup tables
const uint qh_base = 2 * ib32;
const uint qs_base = 4 * ib32;
const uint sc_index = ib32 / 2;
const uint sc_shift = 6 * (ib32 & 1);
// Loop over rows in the superblock
[[unroll]] for (uint n = 0; n < num_rows; ++n) { [[unroll]] for (uint n = 0; n < num_rows; ++n) {
// Load per-block scales and shift for quantization
const uint16_t[4] scales = data_a[ibi].scales; const uint16_t[4] scales = data_a[ibi].scales;
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12; const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x); const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
const uint sc = data_a[ibi].scales[sc_index] >> sc_shift;
const uint sc = data_a[ibi].scales[ib32 / 2] >> (6 * (ib32 & 1)); // Temporary caches for decoding
FLOAT_TYPE dl_cache[4];
uint16_t gvf_cache[4];
float delta_cache[4];
// Precompute the multiplier and lookup values for 4 sub-blocks
[[unroll]] for (uint l = 0; l < 4; ++l) { [[unroll]] for (uint l = 0; l < 4; ++l) {
const uint qh = data_a[ibi].qh[2 * ib32 + l / 2] >> (4 * (l&1)); dl_cache[l] = FLOAT_TYPE(d * (2 * bitfieldExtract(sc, 3 * int(l / 2), 3) + 1));
const uint qs = data_a[ibi].qs[4 * ib32 + l]; const uint qh = data_a[ibi].qh[qh_base + l / 2] >> (4 * (l & 1));
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA; const uint qs = data_a[ibi].qs[qs_base + l];
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(l / 2), 3) + 1); gvf_cache[l] = iq1s_grid[qs | ((qh & 7) << 8)];
delta_cache[l] = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]); }
// Loop over columns of the output
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 b0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 0]); // Compute base index for matrix B
vec4 b4 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 1]); const uint base_b_idx = (j * p.batch_stride_b + b_offset + y_idx) / 4;
vec4 b_vals[8];
FLOAT_TYPE sum = FLOAT_TYPE(0.0); // Load 8 vec4 values from matrix B
[[unroll]] for (int k = 0; k < 4; ++k) { [[unroll]] for (int idx = 0; idx < 8; ++idx) {
sum = fma(FLOAT_TYPE(b0[k]), bitfieldExtract(grid, 2 * k, 2) + delta, b_vals[idx] = vec4(data_b_v4[base_b_idx + idx]);
fma(FLOAT_TYPE(b4[k]), bitfieldExtract(grid, 8 + 2 * k, 2) + delta, sum));
} }
temp[j][n] = fma(dl, sum, temp[j][n]);
FLOAT_TYPE col_sum = FLOAT_TYPE(0.0);
// Loop over sub-blocks
[[unroll]] for (uint l = 0; l < 4; ++l) {
const uint16_t grid = gvf_cache[l];
const float dl = dl_cache[l];
// Decode 8 2-bit fbits from gvf_cache
float f0 = float(bitfieldExtract(grid, 0, 2));
float f1 = float(bitfieldExtract(grid, 2, 2));
float f2 = float(bitfieldExtract(grid, 4, 2));
float f3 = float(bitfieldExtract(grid, 6, 2));
float f4 = float(bitfieldExtract(grid, 8, 2));
float f5 = float(bitfieldExtract(grid, 10, 2));
float f6 = float(bitfieldExtract(grid, 12, 2));
float f7 = float(bitfieldExtract(grid, 14, 2));
// Pack into vec4 for vectorized FMA
const vec4 fbits_v0 = vec4(f0, f1, f2, f3);
const vec4 fbits_v1 = vec4(f4, f5, f6, f7);
const vec4 delta_v = vec4(delta_cache[l]);
// Vectorized fused multiply-add
vec4 sum_v = fma(b_vals[2*l + 0], fbits_v0 + delta_v, vec4(0.0));
sum_v = fma(b_vals[2*l + 1], fbits_v1 + delta_v, sum_v);
// Horizontal add to get scalar sum
FLOAT_TYPE sum = sum_v.x + sum_v.y + sum_v.z + sum_v.w;
// Accumulate to column sum
col_sum = fma(dl, sum, col_sum);
} }
// Write result to temporary buffer
temp[j][n] += col_sum;
} }
ibi += num_blocks_per_row; ibi += num_blocks_per_row;
} }