Improve compute_vector_statistics() processing of mismatched tensor sizes

This commit is contained in:
Ed Addario 2025-10-29 18:35:39 +00:00
parent 2a6f5d7e60
commit 006e7ef991
No known key found for this signature in database
GPG Key ID: E7875815A3230993
1 changed files with 64 additions and 63 deletions

View File

@ -166,6 +166,7 @@ static std::vector<float> compute_tensor_averages(const Stats & tstats) {
static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) {
const size_t n_mat = e.counts.size();
const size_t len = e.activations.empty() ? e.values.size() : e.activations.size();
const bool legacy = e.activations.empty();
if (n_mat == 0) {
LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str());
return false;
@ -174,77 +175,77 @@ static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, c
LOG_ERR("%s: activation size mismatch for tensor %s (len=%zu, counts=%zu)\n", __func__, name.c_str(), len, n_mat);
return false;
}
const size_t row_size = len / n_mat;
std::vector<float> activations;
activations.reserve(len);
for (size_t i = 0; i < n_mat; ++i) {
const auto c = (float)e.counts[i];
const size_t off = i * row_size;
if (c <= 0.0f) {
activations.insert(activations.end(), row_size, 0.0f);
continue;
}
if (e.activations.empty()) {
for (size_t j = 0; j < row_size; ++j) {
activations.push_back(e.values[off + j] / c); // mean-of-squares
}
} else {
for (size_t j = 0; j < row_size; ++j) {
activations.push_back(e.activations[off + j] / c); // mean
}
}
}
if (activations.empty()) {
LOG_ERR("%s: computed empty activation vector for tensor %s\n", __func__, name.c_str());
if (!legacy && e.values.size() != len) {
LOG_ERR("%s: activations/values size mismatch for tensor %s (act=%zu, val=%zu)\n", __func__, name.c_str(), len, e.values.size());
return false;
}
const size_t row_size = len / n_mat;
double mean = 0.0;
double M2 = 0.0;
double sum = 0.0;
float vmax = activations[0];
float vmin = activations[0];
for (float v : activations) {
sum += v;
vmax = std::max(vmax, v);
vmin = std::min(vmin, v);
float vmin = std::numeric_limits<float>::infinity();
float vmax = -std::numeric_limits<float>::infinity();
double energy_sum = 0.0;
size_t valid_n = 0;
for (size_t i = 0; i < n_mat; ++i) {
const auto c = (float)e.counts[i];
if (c <= 0.0f) { continue; } // skip experts with zero count
const size_t off = i * row_size;
for (size_t j = 0; j < row_size; ++j) {
const double v_avg = legacy ? 0.0 : (double)e.activations[off + j] / (double)c; // E[x]
const double v_energy = (double)e.values[off + j] / (double)c; // E[x^2]
const double v = legacy ? v_energy : v_avg;
++valid_n;
sum += v;
vmin = std::min(vmin, (float)v);
vmax = std::max(vmax, (float)v);
const double delta = v - mean;
mean += delta / (double)valid_n;
M2 += delta * (v - mean);
energy_sum += std::max(0.0, v_energy);
}
}
const auto mean = (float)(sum / (double)activations.size());
double sqr_sum = 0.0;
for (const float v : activations) { sqr_sum += (double)v * (double)v; }
double variance = sqr_sum / (double)activations.size() - (double)mean * (double)mean;
variance = std::max(variance, 0.0);
const float std_deviation = std::sqrt((float)variance);
if (valid_n == 0) {
LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str());
return false;
}
float std_deviation = 0.0f;
float entropy = 0.0f;
if (e.activations.empty()) {
double energy_sum = 0.0;
for (float v : activations) { energy_sum += (double)std::max(0.0f, v); }
if (energy_sum > 0.0) {
for (const float v : activations) {
const double p = std::max(0.0, (double)v) / energy_sum;
if (p > 0.0) { entropy -= (float)(p * std::log2(p)); }
}
}
} else {
double energy_sum = 0.0;
for (const float v : activations) { energy_sum += (double)v * (double)v; }
if (energy_sum > 0.0) {
for (const float v : activations) {
const double p = (double)v * (double)v / energy_sum;
double zd_count = 0.0;
double variance = valid_n > 1 ? M2 / ((double)valid_n - 1) : 0.0;
variance = std::max(variance, 0.0);
std_deviation = std::sqrt((float)variance);
if (energy_sum > 0.0) {
for (size_t i = 0; i < n_mat; ++i) {
const auto c = (float)e.counts[i];
if (c <= 0.0f) { continue; }
const size_t off = i * row_size;
for (size_t j = 0; j < row_size; ++j) {
const double v_energy = (double)e.values[off + j] / (double)c; // E[x^2]
const double w = std::max(0.0, v_energy);
const double p = w / energy_sum;
if (p > 0.0) { entropy -= (float)(p * std::log2(p)); }
}
}
}
// ZD score: fraction with |z| > 1
double zd_count = 0.0;
if (std_deviation > 0.0f) {
for (const float v : activations) {
const float z = (v - mean) / std_deviation;
if (std::fabs(z) > 1.0f) { zd_count += 1.0; }
for (size_t i = 0; i < n_mat; ++i) {
const float c = (float)e.counts[i];
if (c <= 0.0f) { continue; }
const size_t off = i * row_size;
for (size_t j = 0; j < row_size; ++j) {
const double v_avg = legacy ? 0.0 : (double)e.activations[off + j] / (double)c; // E[x]
const double v_energy = (double)e.values[off + j] / (double)c; // E[x^2]
const float v = (float)(legacy ? v_energy : v_avg);
const float z = (v - (float)mean) / std_deviation;
if (std::fabs(z) > 1.0f) { zd_count += 1.0; }
}
}
}
@ -252,13 +253,13 @@ static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, c
ts.tensor = name;
ts.stats = e;
ts.sum_values = (float)sum;
ts.mean_values = mean;
ts.mean_values = (float)mean;
ts.max_values = vmax;
ts.min_values = vmin;
ts.elements = (int)activations.size();
ts.elements = valid_n;
ts.std_deviation = std_deviation;
ts.entropy = entropy;
ts.zd_score = ts.elements > 0 ? (float)(zd_count / (double)ts.elements) : 0.0f;
ts.zd_score = (float)(zd_count / (double)valid_n);
return e.activations.empty();
}
@ -267,7 +268,7 @@ static void compute_tensor_statistics(std::vector<tensor_statistics> & tstats) {
static const std::regex pattern(R"(blk\.(\d+)\.)");
for (auto & ts : tstats) {
ts.cossim = 0.0f;
ts.l2_norm = 0.0f;
ts.l2_dist = 0.0f;
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
const int blk = std::stoi(match[1]);
@ -309,7 +310,7 @@ static void compute_tensor_statistics(std::vector<tensor_statistics> & tstats) {
ts.cossim = cs;
// Compute L2 Norm (Euclidean Distance)
ts.l2_norm = std::sqrt(l2_dist_sq);
ts.l2_dist = std::sqrt(l2_dist_sq);
}
}
}