matlab backup
This commit is contained in:
parent
ad16d16273
commit
a1642bf6ec
|
|
@ -1,4 +1,4 @@
|
|||
clear all;
|
||||
% clear all; %close all;
|
||||
|
||||
folder = 'calibration_data/new_indoor/';
|
||||
files = dir(folder); files = files(3:end); % remove . and ..
|
||||
|
|
@ -21,6 +21,8 @@ files = files(orderI);
|
|||
|
||||
median_result = zeros(1, length(files));
|
||||
mean_result = zeros(1, length(files));
|
||||
median_rssi = zeros(1, length(files));
|
||||
median_diststd = zeros(1, length(files));
|
||||
all_data = [];
|
||||
figure(1); clf; hold on;
|
||||
% figure(2); clf; hold on;
|
||||
|
|
@ -56,6 +58,8 @@ for i = 1:length(files)
|
|||
|
||||
mean_result(i) = mean(rawDist);
|
||||
median_result(i) = median(rawDist);
|
||||
median_diststd(i) = median(sqrt(rawDistVar));
|
||||
median_rssi(i) = median(rssi);
|
||||
|
||||
fprintf('distance: %d:\n', targets(i));
|
||||
fprintf('* mean: %.2f (uncalibrated)\n', mean_result(i));
|
||||
|
|
@ -71,7 +75,11 @@ for i = 1:length(files)
|
|||
|
||||
all_data = [...
|
||||
all_data,...
|
||||
[rawDist; targets(i) * ones(1, size(rawDist, 2))]...
|
||||
[rawDist;...
|
||||
targets(i) * ones(1, size(rawDist, 2));...
|
||||
sqrt(rawDistVar);...
|
||||
rssi
|
||||
]...
|
||||
];
|
||||
end
|
||||
|
||||
|
|
@ -113,6 +121,17 @@ mstd_linear = sqrt(...
|
|||
sum((data_linear - all_data(2, :)).^2) / size(all_data, 2));
|
||||
scatter(all_data(1, :), data_linear, 'c.');
|
||||
|
||||
|
||||
diffs = data_linear - all_data(2, :); diffs_std = [];
|
||||
figure(4); clf; hold on;
|
||||
cdfplot(diffs)
|
||||
% for i = 1:size(targets, 2)
|
||||
% diffs_std(i) = std(diffs(all_data(2, :) == targets(i)));
|
||||
% % pause;
|
||||
% end
|
||||
% scatter(median_rssi, diffs_std)
|
||||
|
||||
figure(3);
|
||||
% parabolic fit
|
||||
param_parabolic = polyfit(all_data(1, :), all_data(2, :), 2);
|
||||
data_parabolic = ...
|
||||
|
|
@ -123,9 +142,46 @@ mstd_parabolic = sqrt(...
|
|||
sum((data_parabolic - all_data(2, :)).^2) / size(all_data, 2));
|
||||
scatter(all_data(1, :), data_parabolic, 'g.');
|
||||
|
||||
xlabel('Raw Distance');
|
||||
ylabel('Target Distance');
|
||||
legend('all data', 'median val', 'linear fit', 'parabolic fit', 'location', 'best')
|
||||
|
||||
fprintf('Std Err:\n');
|
||||
fprintf(' linear mode: %.6f\n', mstd_linear);
|
||||
fprintf(' parabolic mode: %.6f\n', mstd_parabolic);
|
||||
|
||||
|
||||
|
||||
|
||||
%
|
||||
% diffs = [];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706485.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706584.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706685.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706784.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706881.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517706976.txt')];
|
||||
% diffs = [diffs, calibration_walking('calibration_data/walking_outdoor/result_walking_3800_to_100cm_1517707172.txt')];
|
||||
% pd = fitdist(diffs(~isnan(diffs))', 'Normal');
|
||||
% prob_fit = cdf(pd, diffs(~isnan(diffs))');
|
||||
% figure(10); clf; hold on;
|
||||
% scatter(diffs(~isnan(diffs))', prob_fit);
|
||||
% cdfplot(diffs); xlim([-200, 200])
|
||||
% xlabel('Distance Err (cm)')
|
||||
% title('Distribution of Distance Err When Walking')
|
||||
% legend('fitted \mu=53.5043, \sigma=72.1852', 'actual dist error', 'location', 'best')
|
||||
|
||||
%
|
||||
diffs = [];
|
||||
diffs = [diffs, calibration_walking('calibration_data/walking_indoor/result_walking_3600_to_100cm_1517693155.txt')];
|
||||
diffs = [diffs, calibration_walking('calibration_data/walking_indoor/result_walking_3600_to_100cm_1517693287.txt')];
|
||||
diffs = [diffs, calibration_walking('calibration_data/walking_indoor/result_walking_3600_to_100cm_1517693408.txt')];
|
||||
diffs = [diffs, calibration_walking('calibration_data/walking_indoor/result_walking_3600_to_100cm_1517693534.txt')];
|
||||
pd = fitdist(diffs(~isnan(diffs))', 'Normal');
|
||||
prob_fit = cdf(pd, diffs(~isnan(diffs))');
|
||||
figure(11); clf; hold on;
|
||||
scatter(diffs(~isnan(diffs))', prob_fit);
|
||||
cdfplot(diffs); xlim([-200, 200])
|
||||
xlabel('Distance Err (cm)')
|
||||
title('Distribution of Distance Err When Walking')
|
||||
legend('fitted \mu=28.8055, \sigma=50.1228', 'actual dist error', 'location', 'best')
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
function diffs = calibration_walking(filename)
|
||||
startI = 3600;
|
||||
endI = 100;
|
||||
if contains(filename, '_r_')
|
||||
startI = 100;
|
||||
endI = 3600;
|
||||
end
|
||||
% param_linear = [0.8927,553.3157]; % outdoor
|
||||
param_linear = [0.9376, 558.0551]; % indoor
|
||||
data = readtable(filename, 'ReadVariableNames', 0);
|
||||
data = data(2:end, :);
|
||||
caliDist = str2double(table2array(data(:, 2)))';
|
||||
rawRTT = str2double(table2array(data(:, 3)))';
|
||||
rawRTTVar = str2double(table2array(data(:, 4)))';
|
||||
rawDist = str2double(table2array(data(:, 5)))';
|
||||
rawDistVar = str2double(table2array(data(:, 6)))';
|
||||
rssi = str2double(table2array(data(:, 7)))';
|
||||
time = str2double(table2array(data(:, 8)))';
|
||||
|
||||
rawDist = movmean(rawDist, 10, 'omitnan');
|
||||
rssi = movmean(rssi, 10, 'omitnan');
|
||||
% for i = size(caliDist, 2) - 3: -4: 1
|
||||
% rawDist(i) = nanmean(rawDist(i: i + 3));
|
||||
% rawDist(i + 1: i + 3) = [];
|
||||
% rssi(i) = nanmean(rssi(i: i + 3));
|
||||
% rssi(i + 1: i + 3) = [];
|
||||
% time(i + 1: i + 3) = [];
|
||||
% end
|
||||
|
||||
dist = rawDist * param_linear(1) + param_linear(2);
|
||||
targets = (time - time(1)) * (endI - startI) / (time(end) - time(1)) + startI;
|
||||
diffs = (targets - dist);
|
||||
fprintf("** mean diff: %.4f cm\n", nanmean(diffs));
|
||||
fprintf("** median diff: %.4f cm\n", nanmedian(diffs));
|
||||
|
||||
figure(1); clf;
|
||||
scatter3(time, dist, rssi); hold on; scatter(time, dist, '.')
|
||||
plot([time(1), time(end)], [startI, endI]); view([0, 90]);
|
||||
if contains(filename, '_r_')
|
||||
title('back')
|
||||
else
|
||||
title('front')
|
||||
end
|
||||
|
||||
figure(2); hold on;
|
||||
pd = fitdist(diffs(~isnan(diffs))', 'Normal')
|
||||
prob_fit = cdf(pd, diffs(~isnan(diffs))');
|
||||
scatter(diffs(~isnan(diffs))', prob_fit);
|
||||
cdfplot(diffs);
|
||||
% histogram(diffs, 'BinWidth', 1, 'Normalization', 'pdf');
|
||||
end
|
||||
Loading…
Reference in New Issue