gemma.cpp/backprop/backward_test.cc

281 lines
9.8 KiB
C++

// Copyright 2023 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef HWY_DISABLED_TARGETS
#define HWY_DISABLED_TARGETS HWY_SCALAR
#endif
#include <stddef.h>
#include <complex>
#include <cstdlib> // std::abs
#include <random>
#include <vector>
#include "backprop/activations.h"
#include "backprop/backward_scalar.h"
#include "backprop/common_scalar.h"
#include "backprop/forward_scalar.h"
#include "backprop/prompt.h"
#include "backprop/sampler.h"
#include "backprop/test_util.h"
#include "gemma/configs.h"
#include "ops/ops.h"
#include "util/threading.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "backprop/backward_test.cc" //NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
// After highway.h
#include "backprop/backward-inl.h"
#include "backprop/forward-inl.h"
#include "compression/compress.h"
#include "ops/ops-inl.h"
#include "util/allocator.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
void TestMatMulVJP() {
static const size_t kRows = 8;
static const size_t kCols = 64;
static const size_t kTokens = 5;
gcpp::NestedPools pools(1, /*pin=*/Tristate::kFalse, BoundedSlice(0, 1),
BoundedSlice(0, 8));
Allocator::Init(pools.Topology());
std::mt19937 gen(42);
MatStorageT<float> weights("weights", kRows, kCols);
MatStorageT<float> x("x", kTokens, kCols);
MatStorageT<float> dy("dy", kTokens, kRows);
MatStorageT<float> grad("grad", kRows, kCols);
MatStorageT<float> dx("dx", kTokens, kCols);
MatStorageT<float> grad_scalar("grad_scalar", kRows, kCols);
MatStorageT<float> dx_scalar("dx_scalar", kTokens, kCols);
using TC = std::complex<double>;
MatStorageT<TC> c_weights("c_weights", kRows, kCols);
MatStorageT<TC> c_x("c_x", kTokens, kCols);
MatStorageT<TC> c_y("c_y", kTokens, kRows);
for (int iter = 0; iter < 10; ++iter) {
RandInit(weights, 1.0f * (1 << iter), gen);
RandInit(x, 1.0f * (1 << iter), gen);
RandInit(dy, 1.0f, gen);
Complexify(weights, c_weights);
Complexify(x, c_x);
auto func = [&]() {
MatMulT(c_weights.data(), c_x.data(), c_y.data(), kRows, kCols, kTokens);
return DotT(dy.data(), c_y.data(), kTokens * kRows);
};
grad.ZeroInit();
MatMulVJP(weights.data(), x.data(), dy.data(), kCols, kRows, kTokens,
grad.data(), dx.data(), pools.Pool());
TestGradient(dx, c_x, func, 5e-5f, 5e-5f, __LINE__);
TestGradient(grad, c_weights, func, 5e-5f, 5e-5f, __LINE__);
grad_scalar.ZeroInit();
MatMulVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(),
dx_scalar.data(), kRows, kCols, kTokens);
TestNear(dx, dx_scalar, 5e-5, 1e-4, __LINE__);
TestNear(grad, grad_scalar, 5e-5, 5e-5, __LINE__);
}
}
void TestMultiHeadMatMulVJP() {
static const size_t kRows = 2;
static const size_t kCols = 16;
static const size_t kHeads = 4;
static const size_t kTokens = 3;
gcpp::NestedPools pools(1, /*pin=*/Tristate::kFalse, BoundedSlice(0, 1),
BoundedSlice(0, 8));
Allocator::Init(pools.Topology());
std::mt19937 gen(42);
MatStorageT<float> weights("weights", kRows, kCols * kHeads);
MatStorageT<float> x("x", kTokens, kCols * kHeads);
MatStorageT<float> grad("grad", kRows, kCols * kHeads);
MatStorageT<float> dx("dx", kTokens, kCols * kHeads);
MatStorageT<float> dy("dy", kTokens, kRows);
MatStorageT<float> grad_scalar("grad_scalar", kRows, kCols * kHeads);
MatStorageT<float> dx_scalar("dx_scalar", kTokens, kCols * kHeads);
using TC = std::complex<double>;
MatStorageT<TC> c_weights("c_weights", kRows, kCols * kHeads);
MatStorageT<TC> c_x("c_x", kTokens, kCols * kHeads);
MatStorageT<TC> c_y("c_y", kTokens, kRows);
for (int iter = 0; iter < 10; ++iter) {
RandInit(weights, 1.0f * (1 << iter), gen);
RandInit(x, 1.0f * (1 << iter), gen);
RandInit(dy, 1.0f, gen);
Complexify(weights, c_weights);
Complexify(x, c_x);
auto func = [&]() {
MultiHeadMatMul(c_weights.data(), c_x.data(), c_y.data(), kHeads, kRows,
kCols, kTokens);
return DotT(dy.data(), c_y.data(), kTokens * kRows);
};
grad.ZeroInit();
MultiHeadMatMulVJP(weights.data(), x.data(), dy.data(), kHeads, kCols,
kRows, kTokens, grad.data(), dx.data(), pools.Pool());
TestGradient(dx, c_x, func, 5e-5f, 5e-5f, __LINE__);
TestGradient(grad, c_weights, func, 5e-5f, 5e-5f, __LINE__);
grad_scalar.ZeroInit();
MultiHeadMatMulVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(),
dx_scalar.data(), kHeads, kRows, kCols, kTokens);
TestNear(dx, dx_scalar, 5e-5, 5e-5, __LINE__);
TestNear(grad, grad_scalar, 5e-5, 5e-5, __LINE__);
}
}
void TestRMSNormVJP() {
static const size_t K = 2;
static const size_t N = 64;
gcpp::NestedPools pools(1, /*pin=*/Tristate::kFalse, BoundedSlice(0, 1),
BoundedSlice(0, 8));
Allocator::Init(pools.Topology());
std::mt19937 gen(42);
MatStorageT<float> weights("weights", N, 1);
MatStorageT<float> x("x", K, N);
MatStorageT<float> grad("grad", N, 1);
MatStorageT<float> dx("dx", K, N);
MatStorageT<float> dy("dy", K, N);
MatStorageT<float> grad_scalar("grad_scalar", N, 1);
MatStorageT<float> dx_scalar("dx_scalar", K, N);
using TC = std::complex<double>;
MatStorageT<TC> c_weights("c_weights", N, 1);
MatStorageT<TC> c_x("c_x", K, N);
MatStorageT<TC> c_y("c_y", K, N);
for (int iter = 0; iter < 10; ++iter) {
RandInit(weights, 1.0f * (1 << iter), gen);
RandInit(x, 1.0f * (1 << iter), gen);
RandInit(dy, 1.0f, gen);
Complexify(weights, c_weights);
Complexify(x, c_x);
auto func = [&]() {
RMSNormT(c_weights.data(), c_x.data(), c_y.data(), N, K);
return DotT(dy.data(), c_y.data(), K * N);
};
grad.ZeroInit();
RMSNormVJP(weights.data(), x.data(), dy.data(), N, K, grad.data(),
dx.data(), pools.Pool());
TestGradient(dx, c_x, func, 5e-5f, 5e-5f, __LINE__);
TestGradient(grad, c_weights, func, 5e-5f, 5e-5f, __LINE__);
grad_scalar.ZeroInit();
RMSNormVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(),
dx_scalar.data(), N, K);
TestNear(dx, dx_scalar, 0, 2e-5, __LINE__);
TestNear(grad, grad_scalar, 0, 2e-5, __LINE__);
}
}
static ModelConfig TestConfig() {
ModelConfig config;
config.scale_names = {"att_ein", "qkv_ein", "gr_lin_x_w", "gr_lin_y_w",
"gr_lin_out_w", "gr_gate_w", "gating_ein", "linear_w"};
config.model_dim = 32;
config.vocab_size = 16;
config.seq_len = 24;
LayerConfig layer_config;
layer_config.model_dim = config.model_dim;
layer_config.ff_hidden_dim = 64;
layer_config.heads = 3;
layer_config.kv_heads = 1;
layer_config.qkv_dim = 16;
config.layer_configs = {2, layer_config};
config.num_tensor_scales = 4 * config.layer_configs.size();
config.query_scale = QueryScaleType::SqrtKeySize;
config.attention_window_sizes = FixedAttentionWindowSizes<2>(32);
// This is required for optimize_test to pass.
config.att_cap = 50.0f;
config.final_cap = 30.0f;
return config;
}
void TestEndToEnd() {
std::mt19937 gen(42);
gcpp::NestedPools pools(1, /*pin=*/Tristate::kFalse, BoundedSlice(0, 1),
BoundedSlice(0, 1));
Allocator::Init(pools.Topology());
ModelConfig config = TestConfig();
WeightsWrapper<float> weights(config);
WeightsWrapper<float> grad(config);
ForwardPass<float> forward0(config);
ForwardPass<float> forward1(config);
ForwardPass<float> backward(config);
using TC = std::complex<double>;
WeightsWrapper<TC> c_weights(config);
ForwardPass<TC> c_forward(config);
ReverseSequenceSampler training_task({0, 0, 1, 1});
std::vector<Prompt> batch = training_task.SampleBatch(3, gen);
RowVectorBatch<float> inv_timescale = CreateInvTimescale(
config.layer_configs[0].qkv_dim,
config.layer_configs[0].post_qk == PostQKType::HalfRope);
for (const Prompt& prompt : batch) {
ReverseSequenceSampler::LogPrompt(prompt);
RandInit(weights.get(), 1.0f, gen);
float loss0 = CrossEntropyLossForwardPass(prompt, weights.get(), forward0);
float loss1 = CrossEntropyLossForwardPass(
prompt.tokens, prompt.context_size, weights.get(), forward1,
inv_timescale, pools.Pool());
EXPECT_NEAR(loss1, loss0, std::abs(loss0) * 2e-5);
grad.ZeroInit();
CrossEntropyLossBackwardPassInl(prompt, weights.get(), forward1, grad.get(),
backward, inv_timescale, pools.Pool());
Complexify(weights.get(), c_weights.get());
auto func = [&]() {
return CrossEntropyLossForwardPass(prompt, c_weights.get(), c_forward);
};
TestGradient(grad.get(), c_weights.get(), func, 2e-3f);
}
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_BEFORE_TEST(BackwardTest);
HWY_EXPORT_AND_TEST_P(BackwardTest, TestMatMulVJP);
HWY_EXPORT_AND_TEST_P(BackwardTest, TestMultiHeadMatMulVJP);
HWY_EXPORT_AND_TEST_P(BackwardTest, TestRMSNormVJP);
HWY_EXPORT_AND_TEST_P(BackwardTest, TestEndToEnd);
HWY_AFTER_TEST();
} // namespace gcpp
#endif