gemma.cpp/paligemma/image.cc

183 lines
5.8 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paligemma/image.h"
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#include "hwy/base.h"
namespace gcpp {
namespace {
// Hardcoded for PaliGemma-224 ViT input.
constexpr size_t kPatchSize = 14;
constexpr size_t kImageSize = 224;
constexpr size_t kNumPatches = kImageSize / kPatchSize; // 16
// Returns the linearly scaled index in [0, to_size) closest to the
// value in [0, from_size).
int NearestNeighbor(int value, int from_size, int to_size) {
float scale_factor = static_cast<float>(to_size - 1) / (from_size - 1);
// Apply nearest neighbor rounding.
int nn = static_cast<int>(std::round(value * scale_factor));
// Ensure the value is within the new range.
nn = std::clamp(nn, 0, to_size - 1);
return nn;
}
// Returns value in [0,1] mapped linearly to [-1,1].
float StretchToSigned(float value) {
// = out_min + (value - in_min) * (out_max - out_min) / (in_max - in_min);
return value * 2.0f - 1.0f;
}
bool IsLineBreak(int c) { return c == '\r' || c == '\n'; }
void SkipWhitespaceAndComments(std::ifstream& file) {
int value = file.get();
while (std::isspace(value)) value = file.get();
while (value == '#') { // Skip comment lines.
while (!IsLineBreak(value)) value = file.get();
while (std::isspace(value)) value = file.get();
}
file.unget(); // Rewind last byte.
}
} // namespace
bool Image::ReadPPM(const std::string& filename) {
std::ifstream file(filename);
if (!file.is_open()) {
std::cerr << "Failed to open " << filename << "\n";
return false;
}
std::string format;
file >> format;
if (format != "P6") {
std::cerr << "We only support binary PPM (P6) but got: " << format << "\n";
return false;
}
int width, height, max_value;
SkipWhitespaceAndComments(file);
file >> width;
SkipWhitespaceAndComments(file);
file >> height;
SkipWhitespaceAndComments(file);
file >> max_value;
if (max_value <= 0 || max_value > 255) {
std::cerr << "Unsupported max value " << max_value << "\n";
return false;
}
// P6 requires exactly one whitespace character after the header.
int value = file.get();
if (!std::isspace(value)) {
std::cerr << "Missing whitespace after header\n";
return false;
}
width_ = width;
height_ = height;
int data_size = width * height * 3;
data_.resize(data_size);
std::vector<char> data_bytes(data_size);
file.read(data_bytes.data(), data_size);
if (file.gcount() != data_size) {
std::cerr << "Failed to read " << data_size << " bytes\n";
return false;
}
for (int i = 0; i < data_size; ++i) {
data_[i] = StretchToSigned(static_cast<float>(data_bytes[i]) / max_value);
}
if (file.get() != EOF) {
std::cerr << "Extra data in file\n";
return false;
}
file.close();
return true;
}
void Image::Resize() {
int new_width = 224;
int new_height = kImageSize;
std::vector<float> new_data(new_width * new_height * 3);
// TODO: go to bilinear interpolation, or antialias.
// E.g. consider WeightsSymmetric3Lowpass and SlowSymmetric3 from
// jpegxl/lib/jxl/convolve_slow.cc
// For now, just do nearest neighbor.
for (int i = 0; i < new_height; ++i) {
for (int j = 0; j < new_width; ++j) {
int old_i = NearestNeighbor(i, new_height, height_);
int old_j = NearestNeighbor(j, new_width, width_);
for (int k = 0; k < 3; ++k) {
new_data[(i * new_width + j) * 3 + k] =
data_[(old_i * width_ + old_j) * 3 + k];
}
}
}
data_ = std::move(new_data);
height_ = new_height;
width_ = new_width;
}
bool Image::WriteBinary(const std::string& filename) const {
// Writes the floating point values as float32 in binary format.
std::ofstream file(filename);
if (!file.is_open()) {
std::cerr << "Failed to open " << filename << "\n";
return false;
}
for (int i = 0; i < data_.size(); ++i) {
file.write(reinterpret_cast<const char*>(&data_[i]), sizeof(float));
}
file.close();
return true;
}
// Image.data() is kImageSize x kImageSize x 3, H x W x C.
// We want the N-th patch (of 256) of size kPatchSize x kPatchSize x 3.
// Patches are numbered in usual "pixel-order".
void Image::GetPatch(size_t patch_num, float* patch) const {
constexpr size_t kDataSize = kImageSize * kImageSize * 3;
HWY_ASSERT(size() == kDataSize);
constexpr size_t kPatchDataSize = kPatchSize * kPatchSize * 3;
int i_offs = patch_num / kNumPatches;
int j_offs = patch_num % kNumPatches;
HWY_ASSERT(0 <= i_offs && i_offs < kNumPatches);
HWY_ASSERT(0 <= j_offs && j_offs < kNumPatches);
i_offs *= kPatchSize;
j_offs *= kPatchSize;
// This can be made faster, but let's first see whether it matters.
const float* image_data = data();
for (int i = 0; i < kPatchSize; ++i) {
for (int j = 0; j < kPatchSize; ++j) {
for (int k = 0; k < 3; ++k) {
const int patch_index = (i * kPatchSize + j) * 3 + k;
HWY_ASSERT(patch_index < kPatchDataSize);
const int image_index =
((i + i_offs) * kImageSize + (j + j_offs)) * 3 + k;
HWY_ASSERT(image_index < kDataSize);
patch[patch_index] = image_data[image_index];
}
}
}
}
} // namespace gcpp