mirror of https://github.com/google/gemma.cpp.git
213 lines
8.4 KiB
C++
213 lines
8.4 KiB
C++
// Copyright 2025 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_
|
|
|
|
// Separate component to ensure `threading.cc` does not have access to
|
|
// `ThreadingContext`, because that could deadlock.
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
// IWYU pragma: begin_exports
|
|
#include "util/allocator.h"
|
|
#include "util/args.h"
|
|
#include "util/basics.h" // Tristate
|
|
#include "util/threading.h"
|
|
#include "util/topology.h"
|
|
#include "hwy/profiler.h"
|
|
// IWYU pragma: end_exports
|
|
|
|
namespace gcpp {
|
|
|
|
// Optional arguments for `ThreadingContext` from the command line.
|
|
class ThreadingArgs : public ArgsBase<ThreadingArgs> {
|
|
public:
|
|
ThreadingArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
|
|
ThreadingArgs() { Init(); };
|
|
|
|
// For BoundedTopology:
|
|
size_t skip_packages;
|
|
size_t max_packages = 1; // some users assign 1 to this, hence non-const.
|
|
size_t skip_clusters;
|
|
size_t max_clusters;
|
|
size_t skip_lps;
|
|
size_t max_lps;
|
|
|
|
Tristate bind;
|
|
|
|
// For NestedPools:
|
|
size_t max_threads; // divided among the detected clusters
|
|
Tristate pin; // pin threads?
|
|
Tristate spin; // use spin waits?
|
|
|
|
template <class Visitor>
|
|
void ForEach(const Visitor& visitor) {
|
|
// These can be used to partition CPU packages/sockets and their
|
|
// clusters/CCXs across several program instances. The default is to use
|
|
// all available resources on the first package.
|
|
visitor(skip_packages, "skip_packages", size_t{0},
|
|
"Index of the first socket to use; default 0 = unlimited.", 2);
|
|
visitor(skip_clusters, "skip_clusters", size_t{0},
|
|
"Index of the first CCX to use; default 0 = unlimited.", 2);
|
|
visitor(max_clusters, "max_clusters", size_t{0},
|
|
"Max CCXs to use; default 0 = unlimited.", 2);
|
|
// "Logical processors" (LPs). These are used when CPU topology is unknown.
|
|
visitor(skip_lps, "skip_lps", size_t{0},
|
|
"Index of the first LP to use; default 0 = unlimited.", 2);
|
|
visitor(max_lps, "max_lps", size_t{0},
|
|
"Max LPs to use; default 0 = unlimited.", 2);
|
|
|
|
// DEPRECATED: superseded by the above fields. If nonzero, `NestedPools`
|
|
// will attempt to create this many threads distributed over the detected
|
|
// topology.
|
|
visitor(max_threads, "num_threads", size_t{0},
|
|
"Max threads to use; default 0 = unlimited.", 2);
|
|
|
|
visitor(pin, "pin", Tristate::kDefault,
|
|
"Pin threads? -1 = auto, 0 = no, 1 = yes.", 2);
|
|
visitor(spin, "spin", Tristate::kDefault,
|
|
"Use spin waits? -1 = auto, 0 = no, 1 = yes.", 2);
|
|
|
|
visitor(bind, "bind", Tristate::kDefault,
|
|
"Bind memory to sockets? -1 = auto, 0 = no, 1 = yes.", 2);
|
|
}
|
|
};
|
|
|
|
// Owns threads corresponding to a subset of the system's resources. Because
|
|
// this is passed to `Gemma::Generate` (via `MatMulEnv`) rather than defined as
|
|
// a singleton, we can have multiple concurrent `Generate` calls within the
|
|
// same process, each with their own `ThreadingContext`. Because each context
|
|
// may pin its threads, it is important that they use distinct packages,
|
|
// clusters, or LPs. For example, to use two packages, the first `args` can have
|
|
// `skip_packages` = 0 and the second `skip_packages` = 1.
|
|
struct ThreadingContext {
|
|
explicit ThreadingContext(const ThreadingArgs& args);
|
|
|
|
// Returns a worker index compatible with those from `ParallelFor`, assuming
|
|
// the current thread is running on one thread per cluster, which happens
|
|
// when `ParallelismStrategy` is `kAcrossClusters`.
|
|
size_t Worker(size_t cluster_idx) const {
|
|
return cluster_idx * pools.MaxWorkersPerCluster();
|
|
}
|
|
|
|
// Singleton; pass around a reference to reduce overhead.
|
|
hwy::Profiler& profiler;
|
|
|
|
// Detects topology, subject to limits imposed by user-specified `args`.
|
|
// For example, if `args.max_clusters` is 1, then `topology.NumClusters()`
|
|
// will be 1 regardless of the actual system topology.
|
|
BoundedTopology topology;
|
|
|
|
// Ctor depends on `topology` for per-cluster cache sizes.
|
|
CacheInfo cache_info;
|
|
|
|
// Ctor depends on `topology` (for NUMA) and `cache_info` (for step size).
|
|
Allocator allocator;
|
|
|
|
// Per-package/cluster/within cluster pools of threads, matching `topology`.
|
|
NestedPools pools;
|
|
};
|
|
|
|
// Describes the strategy for distributing parallel work across cores.
|
|
enum class ParallelismStrategy : uint8_t {
|
|
// Execute using a single-threaded loop on the calling thread. The `worker`
|
|
// index passed to the user's `Func` is unique across clusters.
|
|
kNone,
|
|
// One thread per cluster within the first package. The `worker` index passed
|
|
// to the user's `Func` is a `cluster_idx <= NumClusters()`. Some CPUs may
|
|
// only have a single cluster, hence `Func` should also contain a nested
|
|
// `ParallelFor` with `kWithinCluster`.
|
|
kAcrossClusters,
|
|
// All cores within the cluster identified by `cluster_idx`. The `worker`
|
|
// index passed to the user's `Func` is unique across clusters. Choose this
|
|
// strategy if already within a `ParallelFor` call with `kAcrossClusters`,
|
|
// or latency is more important than memory bandwidth.
|
|
kWithinCluster,
|
|
// Equivalent to `kAcrossClusters` if there are multiple clusters, otherwise
|
|
// `kWithinCluster`. Use for few or lightweight tasks (this only uses a
|
|
// single pool and barrier), or to maximize memory bandwidth availability.
|
|
kFlat,
|
|
// First statically partitions `kAcrossClusters`, then `kWithinCluster`. This
|
|
// utilizes all cores, but has higher fork-join overhead (two barriers); use
|
|
// if there are many or heavy tasks.
|
|
kHierarchical,
|
|
};
|
|
|
|
// Calls `func(task, worker)` for each `task` in `[0, num_tasks)`, with the
|
|
// number/type of workers determined by `parallelism`. `cluster_idx` is for
|
|
// `parallelism == kWithinCluster`, and should be 0 if unknown.
|
|
template <class Func>
|
|
void ParallelFor(ParallelismStrategy parallelism, size_t num_tasks,
|
|
ThreadingContext& ctx, size_t cluster_idx, const Func& func) {
|
|
HWY_DASSERT(cluster_idx < ctx.topology.NumClusters());
|
|
if (cluster_idx != 0) {
|
|
// If already running across clusters, only use within-cluster modes.
|
|
HWY_DASSERT(parallelism == ParallelismStrategy::kNone ||
|
|
parallelism == ParallelismStrategy::kWithinCluster);
|
|
}
|
|
|
|
switch (parallelism) {
|
|
case ParallelismStrategy::kNone: {
|
|
const size_t worker = ctx.Worker(cluster_idx);
|
|
for (size_t task = 0; task < num_tasks; ++task) {
|
|
func(task, worker);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case ParallelismStrategy::kAcrossClusters:
|
|
return ctx.pools.AllClusters().Run(
|
|
0, num_tasks,
|
|
[&](uint64_t task, size_t cluster_idx) { func(task, cluster_idx); });
|
|
|
|
case ParallelismStrategy::kWithinCluster: {
|
|
// Ensure the worker argument is unique across clusters, because it is
|
|
// used for TLS indexing for example in profiler.h.
|
|
const size_t base = ctx.Worker(cluster_idx);
|
|
return ctx.pools.Cluster(cluster_idx)
|
|
.Run(0, num_tasks, [&](uint64_t task, size_t worker) {
|
|
func(task, base + worker);
|
|
});
|
|
}
|
|
|
|
case ParallelismStrategy::kFlat: {
|
|
// Check for single cluster; if not, we must compute `cluster_base` for
|
|
// consistent and non-overlapping worker indices.
|
|
hwy::ThreadPool& all_clusters = ctx.pools.AllClusters();
|
|
const size_t num_clusters = all_clusters.NumWorkers();
|
|
if (num_clusters == 1) {
|
|
return ctx.pools.Cluster(cluster_idx)
|
|
.Run(0, num_tasks,
|
|
[&](uint64_t task, size_t worker) { func(task, worker); });
|
|
}
|
|
|
|
return ctx.pools.AllClusters().Run(
|
|
0, num_tasks, [&](uint64_t task, size_t cluster_idx) {
|
|
const size_t worker = ctx.Worker(cluster_idx);
|
|
func(task, worker);
|
|
});
|
|
}
|
|
|
|
case ParallelismStrategy::kHierarchical:
|
|
return HierarchicalParallelFor(num_tasks, ctx.pools, func);
|
|
}
|
|
}
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_
|