gemma.cpp/gemma/activations.h

188 lines
6.7 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
#include <math.h> // sqrtf
#include <stddef.h>
#include <vector>
#include "gemma/configs.h" // ModelConfig
#include "ops/matmul.h" // MatMulEnv
#include "ops/ops.h" // CreateInvTimescale
#include "util/allocator.h" // Allocator
#include "util/basics.h" // BF16
#include "util/mat.h" // MatStorageT
#include "hwy/profiler.h"
namespace gcpp {
// Returns the scale value to use for the query in the attention computation.
// Also called by ops_test.
static inline float ChooseQueryScale(const ModelConfig& config) {
if (config.query_scale == QueryScaleType::SqrtModelDimDivNumHeads)
return 1.0f / sqrtf(static_cast<float>(config.model_dim /
config.layer_configs[0].heads));
// QueryScaleType::SqrtKeySize
return 1.0f / sqrtf(static_cast<float>(config.layer_configs[0].qkv_dim));
}
struct Activations {
Activations(const ModelConfig& config, size_t batch_size,
std::vector<hwy::AlignedFreeUniquePtr<uint8_t*[]>>& row_ptrs)
: weights_config(config),
layer_config(config.layer_configs[0]),
seq_len(config.seq_len),
cache_pos_size(config.CachePosSize()),
is_griffin(config.model == Model::GRIFFIN_2B),
query_scale(ChooseQueryScale(config)),
x("x", Extents2D(batch_size, config.model_dim), pad_),
// `vocab_size == 0` means it is for Vit part, VitAttention is still MHA
// and does not use an external KV cache.
q("q",
Extents2D(batch_size,
config.vocab_size == 0
? layer_config.heads * 3 * layer_config.qkv_dim
: layer_config.heads * layer_config.qkv_dim),
pad_),
logits("logits", Extents2D(batch_size, config.vocab_size), pad_),
pre_att_rms_out("pre_att_rms_out",
Extents2D(batch_size, config.model_dim), pad_),
att("att", Extents2D(batch_size, layer_config.heads * config.seq_len),
pad_),
att_out(
"att_out",
Extents2D(batch_size, layer_config.heads * layer_config.qkv_dim),
pad_),
att_sums("att_sums", Extents2D(batch_size, config.model_dim), pad_),
pre_ffw_rms_out("pre_ffw_rms_out",
Extents2D(batch_size, config.model_dim), pad_),
C1("C1", Extents2D(batch_size, layer_config.ff_hidden_dim), pad_),
C2("C2", Extents2D(batch_size, layer_config.ff_hidden_dim), pad_),
ffw_out("ffw_out", Extents2D(batch_size, config.model_dim), pad_),
griffin_x("griffin_x",
is_griffin ? Extents2D(batch_size, config.model_dim) : none_,
pad_),
griffin_y("griffin_y",
is_griffin ? Extents2D(batch_size, config.model_dim) : none_,
pad_),
griffin_gate_x(
"griffin_gate_x",
is_griffin ? Extents2D(batch_size, config.model_dim) : none_, pad_),
griffin_multiplier(
"griffin_mul",
is_griffin ? Extents2D(batch_size, config.model_dim) : none_, pad_),
inv_timescale(
CreateInvTimescale(layer_config.qkv_dim,
layer_config.post_qk == PostQKType::HalfRope)),
inv_timescale_global(CreateInvTimescale(
layer_config.qkv_dim, layer_config.post_qk == PostQKType::HalfRope,
1000000.0)),
gen_tokens(batch_size) {
HWY_ASSERT(batch_size != 0);
// For MatMul outputs, precompute their row pointers.
// If we forget any MatMul outputs here, debug builds print a warning but
// fill them in each MatMul call.
x.AllocateAndAttachRowPtrs(row_ptrs);
q.AllocateAndAttachRowPtrs(row_ptrs);
logits.AllocateAndAttachRowPtrs(row_ptrs);
att_sums.AllocateAndAttachRowPtrs(row_ptrs);
C1.AllocateAndAttachRowPtrs(row_ptrs);
C2.AllocateAndAttachRowPtrs(row_ptrs);
ffw_out.AllocateAndAttachRowPtrs(row_ptrs);
// Note that BindC on any MatMul output considerably slows down Prefill.
}
void SetBatchSize(size_t batch_size) {
PROFILER_ZONE("SetBatchSize");
x.OverrideRows(batch_size);
q.OverrideRows(batch_size);
logits.OverrideRows(batch_size);
pre_att_rms_out.OverrideRows(batch_size);
att.OverrideRows(batch_size);
att_out.OverrideRows(batch_size);
att_sums.OverrideRows(batch_size);
pre_ffw_rms_out.OverrideRows(batch_size);
C1.OverrideRows(batch_size);
C2.OverrideRows(batch_size);
ffw_out.OverrideRows(batch_size);
if (is_griffin) {
griffin_x.OverrideRows(batch_size);
griffin_y.OverrideRows(batch_size);
griffin_gate_x.OverrideRows(batch_size);
griffin_multiplier.OverrideRows(batch_size);
}
gen_tokens.resize(batch_size);
}
const ModelConfig& weights_config;
const LayerConfig& layer_config;
size_t seq_len;
size_t cache_pos_size = 0; // TODO: after moving KVCache to MatStorageT.
bool is_griffin;
float query_scale;
const Extents2D none_ = Extents2D();
const MatPadding pad_ = MatPadding::kOdd;
MatStorageT<float> x; // input
MatStorageT<float> q; // query
MatStorageT<float> logits;
// Attention
MatStorageT<float> pre_att_rms_out;
MatStorageT<float> att; // attention vector
MatStorageT<float> att_out; // attention output
// Accumulation of attention outputs over heads
MatStorageT<BF16> att_sums;
// Gated FFW
MatStorageT<BF16> pre_ffw_rms_out;
MatStorageT<float> C1; // TODO: BF16 after Activation() supports it
MatStorageT<float> C2;
MatStorageT<BF16> ffw_out;
// Griffin
MatStorageT<float> griffin_x;
MatStorageT<float> griffin_y;
MatStorageT<float> griffin_gate_x;
MatStorageT<float> griffin_multiplier;
// Rope
MatStorageT<float> inv_timescale;
MatStorageT<float> inv_timescale_global;
// Storage for the last generated token from each query, passed to the next
// Transformer() call.
std::vector<int> gen_tokens; // one per query in the batch
};
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_