mirror of https://github.com/google/gemma.cpp.git
801 lines
32 KiB
C++
801 lines
32 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Lightweight C++ implementation of the gemma model.
|
|
|
|
// Compiles this file for multiple architectures via "foreach_target.h", to
|
|
// which we pass the filename via macro 'argument'.
|
|
#undef HWY_TARGET_INCLUDE
|
|
#define HWY_TARGET_INCLUDE "gemma.cc" // NOLINT
|
|
#include "hwy/foreach_target.h" // IWYU pragma: keep
|
|
// Must come after foreach_target.h to avoid redefinition errors.
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "compression/compress-inl.h"
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "ops.h"
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "util/args.h" // Path
|
|
#include "hwy/contrib/matvec/matvec-inl.h"
|
|
#include "hwy/highway.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/timer.h"
|
|
|
|
// Non-SIMD includes and types. Note that HWY_ONCE is only true on the last
|
|
// compile pass, whereas we want this defined in the first.
|
|
#ifndef GEMMA_ONCE
|
|
#define GEMMA_ONCE
|
|
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <filesystem> // NOLINT
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "compression/compress.h"
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "configs.h"
|
|
// copybara:import_next_line:gemma_cpp
|
|
#include "gemma.h"
|
|
#include "hwy/aligned_allocator.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "sentencepiece_processor.h"
|
|
|
|
namespace gcpp {
|
|
|
|
template <class TConfig>
|
|
struct Layer {
|
|
Layer() = default;
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
static constexpr size_t kAttVecEinsumWSize = kHeads * kQKVDim * kModelDim;
|
|
// 3x for (query, key, value)
|
|
static constexpr size_t kQKVEinsumWSize = 3 * kHeads * kQKVDim * kModelDim;
|
|
// 2x for (gelu gating vector, gated vector)
|
|
static constexpr size_t kGatingEinsumWSize = 2 * kFFHiddenDim * kModelDim;
|
|
|
|
std::array<float, kAttVecEinsumWSize> attn_vec_einsum_w;
|
|
std::array<float, kQKVEinsumWSize> qkv_einsum_w;
|
|
std::array<float, kGatingEinsumWSize> gating_einsum_w;
|
|
std::array<float, kModelDim * kFFHiddenDim> linear_w;
|
|
std::array<float, kModelDim> pre_attention_norm_scale;
|
|
std::array<float, kModelDim> pre_ffw_norm_scale;
|
|
};
|
|
|
|
template <class TConfig>
|
|
struct Weights {
|
|
Weights() = default;
|
|
|
|
hwy::AlignedUniquePtr<Layer<TConfig>[]> layers; // kLayers
|
|
|
|
std::array<float, TConfig::kVocabSize * TConfig::kModelDim>
|
|
embedder_input_embedding;
|
|
|
|
std::array<float, TConfig::kModelDim> final_norm_scale;
|
|
};
|
|
|
|
// Only called if cached loading fails.
|
|
template <typename TConfig>
|
|
hwy::AlignedUniquePtr<Weights<TConfig>> LoadWeights(const Path& checkpoint) {
|
|
PROFILER_ZONE("Startup.LoadWeights");
|
|
using TWeights = Weights<TConfig>;
|
|
hwy::AlignedUniquePtr<TWeights> weights = hwy::MakeUniqueAligned<TWeights>();
|
|
weights->layers =
|
|
hwy::MakeUniqueAlignedArray<Layer<TConfig>>(TConfig::kLayers);
|
|
|
|
FILE* fptr;
|
|
fptr = fopen(checkpoint.path.c_str(), "rb");
|
|
if (fptr == nullptr) {
|
|
HWY_ABORT("Failed to open model file %s - does it exist?",
|
|
checkpoint.path.c_str());
|
|
}
|
|
bool ok = true;
|
|
ok &= 1 == fread(&(weights->embedder_input_embedding),
|
|
sizeof(weights->embedder_input_embedding), 1, fptr);
|
|
ok &= 1 == fread(&(weights->final_norm_scale),
|
|
sizeof(weights->final_norm_scale), 1, fptr);
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
Layer<TConfig>* layer_view = &weights->layers[layer];
|
|
ok &= 1 == fread(&layer_view->attn_vec_einsum_w,
|
|
sizeof(layer_view->attn_vec_einsum_w), 1, fptr);
|
|
ok &= 1 == fread(&layer_view->qkv_einsum_w,
|
|
sizeof(layer_view->qkv_einsum_w), 1, fptr);
|
|
ok &= 1 == fread(&layer_view->gating_einsum_w,
|
|
sizeof(layer_view->gating_einsum_w), 1, fptr);
|
|
ok &= 1 ==
|
|
fread(&layer_view->linear_w, sizeof(layer_view->linear_w), 1, fptr);
|
|
ok &= 1 == fread(&layer_view->pre_attention_norm_scale,
|
|
sizeof(layer_view->pre_attention_norm_scale), 1, fptr);
|
|
ok &= 1 == fread(&layer_view->pre_ffw_norm_scale,
|
|
sizeof(layer_view->pre_ffw_norm_scale), 1, fptr);
|
|
}
|
|
if (!ok) {
|
|
HWY_ABORT("Failed to read from %s - might be a directory, or too small?",
|
|
checkpoint.path.c_str());
|
|
}
|
|
HWY_ASSERT(0 == fclose(fptr));
|
|
return weights;
|
|
}
|
|
|
|
template <class TConfig>
|
|
struct CompressedLayer {
|
|
// No ctor/dtor, allocated via AllocateAligned.
|
|
|
|
using TLayer = gcpp::Layer<TConfig>;
|
|
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
|
|
// Compressed Parameters
|
|
// We don't yet have an RMSNorm that accepts all WeightT.
|
|
CompressedArray<hwy::bfloat16_t, kModelDim> c_pre_attention_norm_scale;
|
|
CompressedArray<hwy::bfloat16_t, kModelDim> c_pre_ffw_norm_scale;
|
|
CompressedArray<WeightT, TLayer::kGatingEinsumWSize> c_gating_einsum_w;
|
|
CompressedArray<WeightT, kModelDim * kFFHiddenDim> c_linear_w;
|
|
CompressedArray<WeightT, TLayer::kQKVEinsumWSize> c_qkv_einsum_w;
|
|
CompressedArray<WeightT, TLayer::kAttVecEinsumWSize> c_attn_vec_einsum_w;
|
|
};
|
|
|
|
// Array instead of single large allocation for parallel mem init. Split out of
|
|
// CompressedWeights so that only these pointers are initialized, not the
|
|
// CompressedArray.
|
|
template <class TConfig>
|
|
struct CompressedLayerPointers {
|
|
explicit CompressedLayerPointers(hwy::ThreadPool& pool) {
|
|
pool.Run(0, TConfig::kLayers, [this](uint64_t task, size_t /*thread*/) {
|
|
this->c_layers[task] = hwy::AllocateAligned<CompressedLayer<TConfig>>(1);
|
|
});
|
|
}
|
|
|
|
using CLayer = CompressedLayer<TConfig>;
|
|
std::array<hwy::AlignedFreeUniquePtr<CLayer[]>, TConfig::kLayers> c_layers;
|
|
};
|
|
|
|
template <class TConfig>
|
|
struct CompressedWeights {
|
|
// No ctor/dtor, allocated via AllocateAligned.
|
|
|
|
CompressedArray<EmbedderInputT, TConfig::kVocabSize * TConfig::kModelDim>
|
|
c_embedder_input_embedding;
|
|
|
|
CompressedArray<hwy::bfloat16_t, TConfig::kModelDim> c_final_norm_scale;
|
|
|
|
// Must be last so that the other arrays remain aligned.
|
|
CompressedLayerPointers<TConfig> c_layer_ptrs;
|
|
|
|
const CompressedLayer<TConfig>* CLayer(size_t layer) const {
|
|
return c_layer_ptrs.c_layers[layer].get();
|
|
}
|
|
CompressedLayer<TConfig>* CLayer(size_t layer) {
|
|
return c_layer_ptrs.c_layers[layer].get();
|
|
}
|
|
};
|
|
|
|
// Aligned.
|
|
template <class TConfig, size_t TBatchSize>
|
|
struct Activations {
|
|
static constexpr size_t kBatchSize = TBatchSize;
|
|
using LayerConfig = Layer<TConfig>;
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
static constexpr size_t kKVHeads = TConfig::kKVHeads;
|
|
static constexpr size_t kCachePosSize = TConfig::kLayers * kKVHeads * kQKVDim;
|
|
static constexpr size_t kCacheLayerSize = kKVHeads * kQKVDim;
|
|
|
|
std::array<float, kBatchSize * kModelDim> x; // input
|
|
std::array<float, kBatchSize * kModelDim> pre_att_rms_out;
|
|
std::array<float, kBatchSize * kHeads * kQKVDim> q; // query vector
|
|
std::array<float, kBatchSize * kHeads * TConfig::kSeqLen>
|
|
att; // attention vector
|
|
std::array<float, kBatchSize * kHeads * kQKVDim> att_out; // attention output
|
|
std::array<float, kHeads * kBatchSize * kModelDim>
|
|
att_post1; // attention output after linear transformation, per head
|
|
std::array<float, kBatchSize * kModelDim>
|
|
att_post2; // accumulation of attention outputs over heads
|
|
std::array<hwy::bfloat16_t, kBatchSize * kModelDim> bf_pre_ffw_rms_out;
|
|
std::array<float, kBatchSize * TConfig::kFFHiddenDim * 2> ffw_hidden;
|
|
// bf_ version can't be used until GeluMulToBF16 issue in FFW() is resolved.
|
|
// std::array<hwy::bfloat16_t, kBatchSize * 2 * TConfig::kFFHiddenDim>
|
|
// bf_ffw_hidden;
|
|
std::array<float, kBatchSize * kModelDim> ffw_out;
|
|
std::array<float, kBatchSize * TConfig::kVocabSize> logits;
|
|
};
|
|
|
|
// GemmaImpl is a template and thus cannot be exposed in gemma.h, hence we
|
|
// define an abstract base class.
|
|
struct GemmaInterface {
|
|
virtual ~GemmaInterface() = default;
|
|
|
|
virtual const sentencepiece::SentencePieceProcessor& Tokenizer() const = 0;
|
|
|
|
// TODO: group pool/callbacks into struct
|
|
virtual void Generate(const InferenceArgs& args,
|
|
const std::vector<int>& prompt, size_t start_pos,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token, std::mt19937& gen,
|
|
int verbosity) = 0;
|
|
};
|
|
|
|
template <class Config>
|
|
struct GemmaImpl : public GemmaInterface {
|
|
GemmaImpl(const LoaderArgs& args, hwy::ThreadPool& pool);
|
|
|
|
~GemmaImpl() {
|
|
using CWeights = CompressedWeights<Config>;
|
|
CWeights* c_weights = reinterpret_cast<CWeights*>(compressed_weights.get());
|
|
c_weights->c_layer_ptrs.~CompressedLayerPointers<Config>();
|
|
}
|
|
|
|
const sentencepiece::SentencePieceProcessor& Tokenizer() const {
|
|
return tokenizer;
|
|
}
|
|
|
|
void Generate(const InferenceArgs& args, const std::vector<int>& prompt,
|
|
size_t start_pos, hwy::ThreadPool& pool,
|
|
hwy::ThreadPool& inner_pool, const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token, std::mt19937&, int verbosity);
|
|
|
|
sentencepiece::SentencePieceProcessor tokenizer;
|
|
|
|
// CompressedWeights<Config>
|
|
hwy::AlignedFreeUniquePtr<uint8_t[]> compressed_weights;
|
|
hwy::AlignedUniquePtr<Activations<Config, kPrefillBatchSize>> prefill;
|
|
hwy::AlignedUniquePtr<Activations<Config, 1>> state;
|
|
KVCache kv_cache;
|
|
};
|
|
|
|
} // namespace gcpp
|
|
#endif // GEMMA_ONCE
|
|
|
|
// SIMD code, compiled once per target.
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace gcpp {
|
|
namespace HWY_NAMESPACE {
|
|
|
|
template <class TConfig, size_t kBatchSize>
|
|
HWY_NOINLINE void Attention(size_t batch_start, size_t batch_idx, size_t layer,
|
|
Activations<TConfig, kBatchSize>& activations,
|
|
const CompressedLayer<TConfig>* c_layer,
|
|
KVCache& kv_cache, hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Gen.Attention");
|
|
const size_t pos = batch_start + batch_idx;
|
|
HWY_DASSERT(batch_idx < kBatchSize);
|
|
static constexpr size_t kQKVDim = gcpp::Activations<TConfig, 1>::kQKVDim;
|
|
static constexpr size_t kCachePosSize =
|
|
gcpp::Activations<TConfig, kBatchSize>::kCachePosSize;
|
|
static constexpr size_t kCacheLayerSize =
|
|
gcpp::Activations<TConfig, kBatchSize>::kCacheLayerSize;
|
|
static constexpr size_t kModelDim =
|
|
gcpp::Activations<TConfig, kBatchSize>::kModelDim;
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
const float kQueryScale = 1.0 / sqrtf(static_cast<float>(kQKVDim));
|
|
|
|
pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR {
|
|
// linear projections to QKV
|
|
const size_t head_offset =
|
|
3 * kQKVDim * kModelDim; // 3x for QKV dimensions
|
|
const size_t q_offset = head * head_offset + 0 * kQKVDim * kModelDim;
|
|
const size_t k_offset = head * head_offset + 1 * kQKVDim * kModelDim;
|
|
const size_t v_offset = head * head_offset + 2 * kQKVDim * kModelDim;
|
|
|
|
float* HWY_RESTRICT q =
|
|
activations.q.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim;
|
|
|
|
const size_t batch_offset = batch_idx * kModelDim;
|
|
|
|
MatVecLoop<kQKVDim, kModelDim>(
|
|
c_layer->c_qkv_einsum_w, q_offset,
|
|
activations.pre_att_rms_out.data() + batch_offset, q);
|
|
|
|
const size_t kv_offset =
|
|
pos * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
|
|
|
|
TwoOfsMatVecLoop<kQKVDim, kModelDim>(
|
|
c_layer->c_qkv_einsum_w, k_offset, v_offset,
|
|
activations.pre_att_rms_out.data() + batch_offset,
|
|
kv_cache.key_cache.get() + kv_offset,
|
|
kv_cache.value_cache.get() + kv_offset);
|
|
|
|
// Calculate scores
|
|
float* HWY_RESTRICT head_att = activations.att.data() +
|
|
head * TConfig::kSeqLen +
|
|
batch_idx * kHeads * kQKVDim;
|
|
|
|
Rope(q, kQKVDim, pos);
|
|
Rope(kv_cache.key_cache.get() + kv_offset, kQKVDim, pos);
|
|
MulByConst(kQueryScale, q, kQKVDim);
|
|
// Compute Q dot K scores
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
const size_t cache_offset =
|
|
pos2 * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
|
|
const float* HWY_RESTRICT k2 = kv_cache.key_cache.get() + cache_offset;
|
|
const float score = Dot(q, k2, kQKVDim);
|
|
head_att[pos2] = score;
|
|
}
|
|
Softmax(head_att, pos + 1);
|
|
|
|
// Weighted summation
|
|
float* HWY_RESTRICT att_out = activations.att_out.data() + head * kQKVDim +
|
|
batch_idx * kHeads * kQKVDim;
|
|
hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out));
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
const size_t cache_offset =
|
|
pos2 * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim;
|
|
float* HWY_RESTRICT v2 = kv_cache.value_cache.get() + cache_offset;
|
|
MulByConstAndAdd(head_att[pos2], v2, att_out, kQKVDim);
|
|
}
|
|
// linear projection from kQKVDim back to kModelDim, sum projections
|
|
// across heads
|
|
float* HWY_RESTRICT head_out =
|
|
head == 0
|
|
? activations.att_post2.data() + batch_idx * kModelDim
|
|
: activations.att_post1.data() + head * kBatchSize * kModelDim;
|
|
MatVecLoop<kModelDim, kQKVDim>(c_layer->c_attn_vec_einsum_w,
|
|
head * kModelDim * kQKVDim, att_out,
|
|
head_out);
|
|
});
|
|
|
|
// accumulate output across all heads into att_post2. head 0 already wrote
|
|
// directly to att_post2.
|
|
for (size_t head = 1; head < kHeads; ++head) {
|
|
AddFrom(activations.att_post1.data() + head * kBatchSize * kModelDim,
|
|
activations.att_post2.data() + batch_idx * kModelDim, kModelDim);
|
|
}
|
|
}
|
|
|
|
template <typename TConfig, size_t kBatchSize>
|
|
HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
|
|
size_t batch_idx, const CompressedLayer<TConfig>* c_layer,
|
|
hwy::ThreadPool& pool) {
|
|
HWY_DASSERT(batch_idx < kBatchSize);
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
const size_t hidden_offset = batch_idx * kFFHiddenDim * 2;
|
|
|
|
{
|
|
PROFILER_ZONE("Gen.FFW.GatedGELU");
|
|
const hwy::bfloat16_t* HWY_RESTRICT vec =
|
|
activations.bf_pre_ffw_rms_out.data() + batch_idx * kModelDim;
|
|
float* HWY_RESTRICT out = activations.ffw_hidden.data() + hidden_offset;
|
|
float* HWY_RESTRICT out_mul = out + kFFHiddenDim;
|
|
|
|
// Same matrix, first and second half of rows. Could fuse into one MatVec,
|
|
// but separating them could help on NUMA e.g. multiple sockets.
|
|
MatVec<kFFHiddenDim, kModelDim>(c_layer->c_gating_einsum_w,
|
|
kFFHiddenDim * kModelDim, vec, out_mul,
|
|
pool);
|
|
|
|
// Gate, will go through the nonlinearity.
|
|
MatVec<kFFHiddenDim, kModelDim>(c_layer->c_gating_einsum_w, 0, vec, out,
|
|
pool);
|
|
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using DF = hn::ScalableTag<float>;
|
|
using VF = hn::Vec<DF>;
|
|
hn::Transform1(DF(), out, kFFHiddenDim, out_mul,
|
|
[](DF df, VF v, VF mul)
|
|
HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); });
|
|
}
|
|
|
|
PROFILER_ZONE("Gen.FFW\\GatedGELU");
|
|
MatVec<kModelDim, kFFHiddenDim>(
|
|
c_layer->c_linear_w, 0, activations.ffw_hidden.data() + hidden_offset,
|
|
activations.ffw_out.data() + batch_idx * kModelDim, pool);
|
|
}
|
|
|
|
template <typename TConfig, size_t kBatchSize>
|
|
HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
|
|
const CompressedWeights<TConfig>& c_weights,
|
|
Activations<TConfig, kBatchSize>& activations,
|
|
KVCache& kv_cache, hwy::ThreadPool& pool,
|
|
hwy::ThreadPool& inner_pool) {
|
|
PROFILER_ZONE("Gen.Prefill\\Att\\FFW");
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static const float kEmbScaling = sqrtf(static_cast<float>(kModelDim));
|
|
|
|
pool.Run(
|
|
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
|
|
const int token = tokens[token_idx];
|
|
Decompress(c_weights.c_embedder_input_embedding, token * kModelDim,
|
|
activations.x.data() + token_idx * kModelDim, kModelDim);
|
|
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
|
|
kModelDim);
|
|
});
|
|
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
const CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer);
|
|
|
|
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
|
RMSNorm(activations.x.data() + token_idx * kModelDim,
|
|
c_layer->c_pre_attention_norm_scale.data(),
|
|
activations.pre_att_rms_out.data() + token_idx * kModelDim,
|
|
kModelDim);
|
|
Attention<TConfig, kBatchSize>(pos, token_idx, layer, activations,
|
|
c_layer, kv_cache, pool);
|
|
}
|
|
|
|
// TODO: sink the loop into these functions, i.e. make them matmuls.
|
|
pool.Run(
|
|
0, num_tokens,
|
|
[&](const uint64_t token_idx, size_t thread_id) HWY_ATTR {
|
|
AddFrom(activations.att_post2.data() + token_idx * kModelDim,
|
|
activations.x.data() + token_idx * kModelDim, kModelDim);
|
|
RMSNorm(activations.x.data() + token_idx * kModelDim,
|
|
c_layer->c_pre_ffw_norm_scale.data(),
|
|
activations.bf_pre_ffw_rms_out.data() + token_idx * kModelDim,
|
|
kModelDim);
|
|
FFW<TConfig, kBatchSize>(activations, token_idx, c_layer, inner_pool);
|
|
AddFrom(activations.ffw_out.data() + token_idx * kModelDim,
|
|
activations.x.data() + token_idx * kModelDim, kModelDim);
|
|
});
|
|
} // foreach layer
|
|
|
|
pool.Run(
|
|
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
|
|
RMSNormInplace(c_weights.c_final_norm_scale.data(),
|
|
activations.x.data() + token_idx * kModelDim, kModelDim);
|
|
});
|
|
}
|
|
|
|
// n = 1 specialization
|
|
template <class TConfig>
|
|
void Transformer(int token, size_t pos,
|
|
const CompressedWeights<TConfig>& c_weights,
|
|
Activations<TConfig, 1>& activations, KVCache& kv_cache,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool) {
|
|
static constexpr size_t kLayers = TConfig::kLayers;
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
|
|
static const float kEmbScaling = sqrtf(static_cast<float>(kModelDim));
|
|
|
|
Decompress(c_weights.c_embedder_input_embedding, token * kModelDim,
|
|
activations.x.data(), kModelDim);
|
|
|
|
MulByConst(kEmbScaling, activations.x.data(), kModelDim);
|
|
|
|
for (size_t layer = 0; layer < kLayers; ++layer) {
|
|
const CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer);
|
|
RMSNorm(activations.x.data(), c_layer->c_pre_attention_norm_scale.data(),
|
|
activations.pre_att_rms_out.data(), kModelDim);
|
|
Attention<TConfig, 1>(pos, 0, layer, activations, c_layer, kv_cache, pool);
|
|
AddFrom(activations.att_post2.data(), activations.x.data(), kModelDim);
|
|
RMSNorm(activations.x.data(), c_layer->c_pre_ffw_norm_scale.data(),
|
|
activations.bf_pre_ffw_rms_out.data(), kModelDim);
|
|
FFW<TConfig, 1>(activations, /* batch_idx = */ 0, c_layer, pool);
|
|
AddFrom(activations.ffw_out.data(), activations.x.data(), kModelDim);
|
|
}
|
|
RMSNormInplace(c_weights.c_final_norm_scale.data(), activations.x.data(),
|
|
kModelDim);
|
|
}
|
|
|
|
template <class TConfig>
|
|
void GenerateImpl(GemmaImpl<TConfig>& gemma, const InferenceArgs& args,
|
|
const std::vector<int>& prompt, size_t pos,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token, std::mt19937& gen,
|
|
int verbosity) {
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kVocabSize = TConfig::kVocabSize;
|
|
static constexpr size_t kTopK = TConfig::kTopK;
|
|
Activations<TConfig, 1>& activations = *gemma.state.get();
|
|
Activations<TConfig, kPrefillBatchSize>& prefill_activations =
|
|
*gemma.prefill.get();
|
|
const CompressedWeights<TConfig>& c_weights =
|
|
*reinterpret_cast<CompressedWeights<TConfig>*>(
|
|
gemma.compressed_weights.get());
|
|
KVCache& kv_cache = gemma.kv_cache;
|
|
int token;
|
|
|
|
// pos indexes the KV cache. In the first turn of a chat, pos = 0.
|
|
//
|
|
// After the first turn, pos gets passed in with > 0 corresponding to the
|
|
// current token position in the KV cache.
|
|
//
|
|
// pos_offset keeps track of the relative position within the turn, starting
|
|
// at 0 each turn. During prefill, pos_offset corresponds to the index into
|
|
// the prompt vector.
|
|
//
|
|
// In single-turn (non-chat) usage, pos and pos_offset start at 0 and are
|
|
// always equal.
|
|
size_t pos_offset = 0; // offset relative to pos
|
|
double prefill_start = hwy::platform::Now();
|
|
|
|
// Prefill stops before prompt.size() - 1 since the last prompt token is the
|
|
// first input token for generation.
|
|
while (pos_offset < prompt.size() - 1) {
|
|
const size_t end_offset =
|
|
std::min(kPrefillBatchSize, prompt.size() - 1 - pos_offset);
|
|
HWY_DASSERT(end_offset < prompt.size());
|
|
const int* batch_tokens = prompt.data() + pos_offset;
|
|
Prefill<TConfig, kPrefillBatchSize>(batch_tokens, end_offset, pos,
|
|
c_weights, prefill_activations,
|
|
kv_cache, pool, inner_pool);
|
|
for (size_t idx = 0; idx < end_offset; ++idx) {
|
|
stream_token(batch_tokens[idx], 0.0);
|
|
}
|
|
pos += end_offset;
|
|
pos_offset += end_offset;
|
|
}
|
|
|
|
if (verbosity >= 2) {
|
|
// in the future this output should not occur in GenerateImpl but instead
|
|
// should be available as observable state for frontend code to handle I/O.
|
|
double prefill_end = hwy::platform::Now();
|
|
const double prefill_tok_sec = pos_offset / (prefill_end - prefill_start);
|
|
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]\n";
|
|
}
|
|
|
|
double gen_start = hwy::platform::Now();
|
|
|
|
HWY_DASSERT(pos_offset == prompt.size() - 1);
|
|
|
|
if (verbosity >= 2) {
|
|
// Provide usage warnings if max_new_tokens is out of range.
|
|
if (args.max_generated_tokens > args.max_tokens) {
|
|
std::cout << "Warning: max_new_tokens should be <= max_tokens"
|
|
<< std::endl;
|
|
} else if ((prompt.size() + args.max_generated_tokens) > args.max_tokens) {
|
|
std::cout << "Warning: Prompt size + max_new_tokens exceeds max_tokens."
|
|
<< std::endl;
|
|
}
|
|
}
|
|
|
|
auto pos_gen_start = pos_offset;
|
|
token = prompt.at(pos_offset);
|
|
size_t generate_pos = 0;
|
|
for (; pos < args.max_tokens && generate_pos < args.max_generated_tokens;
|
|
++pos, ++pos_offset, ++generate_pos) {
|
|
Transformer(token, pos, c_weights, activations, kv_cache, pool, inner_pool);
|
|
float* final_activation = activations.x.data();
|
|
if (pos_offset >= prompt.size()) {
|
|
PROFILER_ZONE("Gen.Embedding");
|
|
// Generation phase
|
|
MatVec<kVocabSize, kModelDim>(c_weights.c_embedder_input_embedding, 0,
|
|
final_activation, activations.logits.data(),
|
|
pool);
|
|
// Barrier: must have all logits so we can subtract max.
|
|
Softmax(activations.logits.data(), kVocabSize);
|
|
token = SampleTopK<kTopK>(activations.logits.data(), kVocabSize, gen,
|
|
args.temperature, accept_token);
|
|
}
|
|
if (!stream_token(token, activations.logits[token])) {
|
|
token = EOS_ID;
|
|
}
|
|
if (token == EOS_ID) {
|
|
if (verbosity >= 2) {
|
|
double gen_end = hwy::platform::Now();
|
|
const double gen_tok_sec =
|
|
(pos_offset - pos_gen_start) / (gen_end - gen_start);
|
|
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Generate2B(GemmaImpl<ConfigGemma2B>& gemma, const InferenceArgs& args,
|
|
const std::vector<int>& prompt, size_t start_pos,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token, const AcceptFunc& accept_token,
|
|
std::mt19937& gen, int verbosity) {
|
|
GenerateImpl(gemma, args, prompt, start_pos, pool, inner_pool, stream_token,
|
|
accept_token, gen, verbosity);
|
|
}
|
|
|
|
void Generate7B(GemmaImpl<ConfigGemma7B>& gemma, const InferenceArgs& args,
|
|
const std::vector<int>& prompt, size_t start_pos,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token, const AcceptFunc& accept_token,
|
|
std::mt19937& gen, int verbosity) {
|
|
GenerateImpl(gemma, args, prompt, start_pos, pool, inner_pool, stream_token,
|
|
accept_token, gen, verbosity);
|
|
}
|
|
|
|
// Calls func(name, float*, CompressedArray&) for each tensor. float* is null
|
|
// if weights = null, which happens during the first call where we attempt to
|
|
// load from cache.
|
|
//
|
|
// This avoids repeating the list of tensors between loading and compressing.
|
|
template <class TConfig, class Func>
|
|
void ForEachTensor(const Weights<TConfig>* weights,
|
|
CompressedWeights<TConfig>& c_weights, Func& func) {
|
|
func("c_embedding",
|
|
weights ? weights->embedder_input_embedding.data() : nullptr,
|
|
c_weights.c_embedder_input_embedding);
|
|
func("c_final_norm", weights ? weights->final_norm_scale.data() : nullptr,
|
|
c_weights.c_final_norm_scale);
|
|
|
|
char name[16];
|
|
for (size_t layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
|
|
Layer<TConfig>* layer = weights ? &weights->layers[layer_idx] : nullptr;
|
|
CompressedLayer<TConfig>* c_layer = c_weights.CLayer(layer_idx);
|
|
|
|
snprintf(name, sizeof(name), "pre_ff_ns_%lu", layer_idx);
|
|
func(name, layer ? layer->pre_ffw_norm_scale.data() : nullptr,
|
|
c_layer->c_pre_ffw_norm_scale);
|
|
|
|
snprintf(name, sizeof(name), "gating_ein_%lu", layer_idx);
|
|
func(name, layer ? layer->gating_einsum_w.data() : nullptr,
|
|
c_layer->c_gating_einsum_w);
|
|
|
|
snprintf(name, sizeof(name), "linear_w_%lu", layer_idx);
|
|
func(name, layer ? layer->linear_w.data() : nullptr, c_layer->c_linear_w);
|
|
snprintf(name, sizeof(name), "qkv_ein_%lu", layer_idx);
|
|
|
|
func(name, layer ? layer->qkv_einsum_w.data() : nullptr,
|
|
c_layer->c_qkv_einsum_w);
|
|
snprintf(name, sizeof(name), "att_ein_%lu", layer_idx);
|
|
|
|
func(name, layer ? layer->attn_vec_einsum_w.data() : nullptr,
|
|
c_layer->c_attn_vec_einsum_w);
|
|
|
|
snprintf(name, sizeof(name), "pre_att_ns_%lu", layer_idx);
|
|
func(name, layer ? layer->pre_attention_norm_scale.data() : nullptr,
|
|
c_layer->c_pre_attention_norm_scale);
|
|
}
|
|
}
|
|
|
|
template <class TConfig>
|
|
hwy::AlignedFreeUniquePtr<uint8_t[]> GetCompressedWeights(
|
|
const Path& model, const Path& cache, hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Startup.LoadCache");
|
|
|
|
if (!std::filesystem::exists(model.path) &&
|
|
!std::filesystem::exists(cache.path)) {
|
|
HWY_ABORT(
|
|
"Either the model weights (--weights) or cached compressed weights "
|
|
"(--compressed_weights) must exist.");
|
|
}
|
|
|
|
// Allocate compressed weights.
|
|
using CWeights = CompressedWeights<TConfig>;
|
|
hwy::AlignedFreeUniquePtr<uint8_t[]> c_weights_u8 =
|
|
hwy::AllocateAligned<uint8_t>(sizeof(CWeights));
|
|
CWeights* c_weights = reinterpret_cast<CWeights*>(c_weights_u8.get());
|
|
new (&c_weights->c_layer_ptrs) CompressedLayerPointers<TConfig>(pool);
|
|
|
|
// First attempt to load them from cache, without requiring weights.
|
|
CacheLoader loader(cache.path.c_str());
|
|
ForEachTensor<TConfig>(nullptr, *c_weights, loader);
|
|
if (loader.ReadAll(pool)) return c_weights_u8;
|
|
|
|
// Get weights, compress, and store in cache.
|
|
hwy::AlignedUniquePtr<Weights<TConfig>> weights = LoadWeights<TConfig>(model);
|
|
Compressor compressor(pool);
|
|
ForEachTensor<TConfig>(weights.get(), *c_weights, compressor);
|
|
compressor.WriteAll(pool, cache.path.c_str());
|
|
|
|
return c_weights_u8;
|
|
}
|
|
|
|
// Type-erased because this function is called via a function pointer.
|
|
hwy::AlignedFreeUniquePtr<uint8_t[]> GetCompressedWeightsT(
|
|
const LoaderArgs& args, hwy::ThreadPool& pool) {
|
|
switch (args.ModelType()) {
|
|
case Model::GEMMA_2B:
|
|
return GetCompressedWeights<ConfigGemma2B>(args.model, args.cache, pool);
|
|
case Model::GEMMA_7B:
|
|
return GetCompressedWeights<ConfigGemma7B>(args.model, args.cache, pool);
|
|
default:
|
|
HWY_ABORT("Model type %d unknown.", static_cast<int>(args.ModelType()));
|
|
}
|
|
}
|
|
|
|
} // namespace HWY_NAMESPACE
|
|
} // namespace gcpp
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#if HWY_ONCE
|
|
namespace gcpp {
|
|
|
|
HWY_EXPORT(GetCompressedWeightsT);
|
|
HWY_EXPORT(Generate2B);
|
|
HWY_EXPORT(Generate7B);
|
|
|
|
KVCache CreateKVCache(size_t size_cache_pos, size_t kSeqLen) {
|
|
KVCache kv_cache = {};
|
|
kv_cache.key_cache = hwy::AllocateAligned<float>(kSeqLen * size_cache_pos);
|
|
kv_cache.value_cache = hwy::AllocateAligned<float>(kSeqLen * size_cache_pos);
|
|
return kv_cache;
|
|
}
|
|
|
|
template <class Config>
|
|
GemmaImpl<Config>::GemmaImpl(const LoaderArgs& args, hwy::ThreadPool& pool)
|
|
: compressed_weights(
|
|
HWY_DYNAMIC_DISPATCH(GetCompressedWeightsT)(args, pool)),
|
|
prefill(hwy::MakeUniqueAligned<Activations<Config, kPrefillBatchSize>>()),
|
|
state(hwy::MakeUniqueAligned<Activations<Config, 1>>()),
|
|
kv_cache(
|
|
CreateKVCache(Config::kLayers * Config::kKVHeads * Config::kQKVDim,
|
|
Config::kSeqLen)) {
|
|
PROFILER_ZONE("Startup.tokenizer");
|
|
|
|
HWY_ASSERT(tokenizer.Load(args.tokenizer.path).ok());
|
|
}
|
|
|
|
template <>
|
|
void GemmaImpl<ConfigGemma2B>::Generate(const InferenceArgs& args,
|
|
const std::vector<int>& prompt,
|
|
size_t start_pos, hwy::ThreadPool& pool,
|
|
hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token,
|
|
std::mt19937& gen, int verbosity) {
|
|
HWY_DYNAMIC_DISPATCH(Generate2B)
|
|
(*this, args, prompt, start_pos, pool, inner_pool, stream_token, accept_token,
|
|
gen, verbosity);
|
|
}
|
|
template <>
|
|
void GemmaImpl<ConfigGemma7B>::Generate(const InferenceArgs& args,
|
|
const std::vector<int>& prompt,
|
|
size_t start_pos, hwy::ThreadPool& pool,
|
|
hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token,
|
|
std::mt19937& gen, int verbosity) {
|
|
HWY_DYNAMIC_DISPATCH(Generate7B)
|
|
(*this, args, prompt, start_pos, pool, inner_pool, stream_token, accept_token,
|
|
gen, verbosity);
|
|
}
|
|
|
|
Gemma::Gemma(const LoaderArgs& args, hwy::ThreadPool& pool) {
|
|
const Model model_type = args.ModelType();
|
|
model_training = args.ModelTraining();
|
|
switch (model_type) {
|
|
case Model::GEMMA_2B:
|
|
impl_.reset(new GemmaImpl<ConfigGemma2B>(args, pool));
|
|
break;
|
|
case Model::GEMMA_7B:
|
|
impl_.reset(new GemmaImpl<ConfigGemma7B>(args, pool));
|
|
break;
|
|
default:
|
|
HWY_ABORT("Model type %d unknown.", static_cast<int>(model_type));
|
|
}
|
|
}
|
|
Gemma::~Gemma() = default; // after GemmaInterface is defined
|
|
|
|
const sentencepiece::SentencePieceProcessor& Gemma::Tokenizer() const {
|
|
return impl_->Tokenizer();
|
|
}
|
|
|
|
void GenerateGemma(Gemma& gemma, const InferenceArgs& args,
|
|
const std::vector<int>& prompt, size_t start_pos,
|
|
hwy::ThreadPool& pool, hwy::ThreadPool& inner_pool,
|
|
const StreamFunc& stream_token,
|
|
const AcceptFunc& accept_token, std::mt19937& gen,
|
|
int verbosity) {
|
|
pool.SetWaitMode(hwy::PoolWaitMode::kSpin);
|
|
gemma.impl_->Generate(args, prompt, start_pos, pool, inner_pool, stream_token,
|
|
accept_token, gen, verbosity);
|
|
pool.SetWaitMode(hwy::PoolWaitMode::kBlock);
|
|
}
|
|
|
|
} // namespace gcpp
|
|
#endif // HWY_ONCE
|