gemma.cpp/backprop/optimize_test.cc

128 lines
4.1 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include "backprop/backward.h"
#include "backprop/forward.h"
#include "backprop/optimizer.h"
#include "backprop/sampler.h"
#include "gemma/activations.h"
#include "gemma/gemma.h"
#include "gemma/weights.h"
#include "gtest/gtest.h"
namespace gcpp {
TEST(OptimizeTest, GradientDescent) {
hwy::ThreadPool pool(0);
std::mt19937 gen(42);
Model model_type = Model::GEMMA_TINY;
ByteStorageT weights = AllocateWeights(model_type, pool);
ByteStorageT grad = AllocateWeights(model_type, pool);
ByteStorageT grad_m = AllocateWeights(model_type, pool);
ByteStorageT grad_v = AllocateWeights(model_type, pool);
ByteStorageT forward = AllocateForwardPass(model_type);
ByteStorageT backward = AllocateForwardPass(model_type);
ByteStorageT inference = AllocateInferenceState(model_type);
auto kv_cache = CreateKVCache(model_type);
size_t max_tokens = 32;
size_t max_generated_tokens = 16;
float temperature = 1.0f;
int verbosity = 0;
const auto accept_token = [](int) { return true; };
const auto generate = [&](const std::vector<int>& prompt) {
std::vector<int> reply;
auto stream_token = [&reply](int token, float) {
reply.push_back(token);
return token != ReverseSequenceSampler::kEndToken;
};
RuntimeConfig runtime = {
max_tokens, max_generated_tokens, temperature, verbosity, &gen,
stream_token, accept_token, ReverseSequenceSampler::kEndToken,
};
TimingInfo timing_info;
GenerateGemma(model_type, weights, inference, runtime, prompt, 0,
kv_cache, pool, timing_info);
return reply;
};
auto verify = [&](const Prompt& prompt) {
auto context = prompt.context();
std::vector<int> reply = generate(context);
bool ok = true;
for (size_t i = 0; ok && i < prompt.tokens.size(); ++i) {
if (i >= reply.size() || reply[i] != prompt.tokens[i]) {
ok = false;
}
}
return ok;
};
RandInitWeights(model_type, weights, pool, gen);
ZeroInitWeights(model_type, grad_m, pool);
ZeroInitWeights(model_type, grad_v, pool);
printf("Initial weights:\n");
LogWeightStats(model_type, weights);
constexpr size_t kBatchSize = 8;
float learning_rate = 0.0005f;
ReverseSequenceSampler training_task({
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1});
size_t steps = 0;
float prev_loss = std::numeric_limits<float>::max();
size_t num_ok;
for (; steps < 1000000; ++steps) {
std::mt19937 sgen(42);
ZeroInitWeights(model_type, grad, pool);
float total_loss = 0.0f;
num_ok = 0;
for (size_t i = 0; i < kBatchSize; ++i) {
Prompt prompt = training_task.Sample(sgen);
total_loss += CrossEntropyLossForwardPass(
model_type, prompt, weights, forward, pool);
CrossEntropyLossBackwardPass(
model_type, prompt, weights, forward, grad, backward, pool);
num_ok += verify(prompt) ? 1 : 0;
}
total_loss /= kBatchSize;
const float scale = -learning_rate / kBatchSize;
UpdateWeights(model_type, grad, scale, weights, pool);
printf("step: %zu total_loss: %.15f num_ok: %zu/%zu\n",
steps, total_loss, num_ok, kBatchSize);
if (steps % 100 == 0) {
printf("Batch gradient:\n");
LogWeightStats(model_type, grad);
}
if (total_loss < 0.5f) {
break;
}
prev_loss = total_loss;
}
printf("Num steps: %zu\n", steps);
printf("Final weights:\n");
LogWeightStats(model_type, weights);
EXPECT_LT(steps, 3000);
EXPECT_EQ(num_ok, kBatchSize);
}
} // namespace gcpp