gemma.cpp/ops/ops_test.cc

784 lines
25 KiB
C++

// Copyright 2023 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "compression/types.h"
#ifndef HWY_DISABLED_TARGETS
#define HWY_DISABLED_TARGETS GEMMA_DISABLED_TARGETS
#endif // HWY_DISABLED_TARGETS
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <functional>
#include <numeric>
#include <random>
#include <vector>
#include "gemma/activations.h" // ChooseQueryScale
#include "gemma/configs.h"
#include "ops/ops.h"
#include "util/allocator.h"
#include "util/basics.h" // BF16
#include "util/mat.h" // MatStorageT
#include "util/test_util.h"
#include "util/threading_context.h"
#include "hwy/profiler.h"
#include "hwy/tests/hwy_gtest.h"
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "ops/ops_test.cc" // NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
// After highway.h
#include "compression/test_util-inl.h"
#include "ops/ops-inl.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
static RngStream MakeRng() {
static AesCtrEngine engine(/*deterministic=*/true);
static uint64_t stream = 0;
return RngStream(engine, ++stream);
}
template <class Test>
struct ForeachCountAndMisalign {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) const {
hwy::RandomState rng;
const size_t N = Lanes(d);
const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
for (size_t count = 0; count < 2 * N; ++count) {
for (size_t ma : misalignments) {
for (size_t mb : misalignments) {
Test()(d, count, ma, mb, rng);
}
}
}
}
};
template <typename T>
T Random(hwy::RandomState& rng) {
const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
const double val = (bits - 512) / 64.0;
// Clamp negative to zero for unsigned types.
return hwy::ConvertScalarTo<T>(
HWY_MAX(hwy::ConvertScalarTo<double>(hwy::LowestValue<T>()), val));
}
template <size_t k>
HWY_NOINLINE std::discrete_distribution<int> SourceCreateDistribution(
std::array<float, k>& top_k, float temperature) {
// re-normalize distribution
for (size_t i = 0; i < k; ++i) {
top_k[i] = exp(log(top_k[i]) / temperature);
}
float denominator = 0.0f;
for (size_t i = 0; i < k; ++i) {
denominator += top_k[i];
}
denominator = 1.0f / denominator;
MulByConst(denominator, top_k.data(), k);
return std::discrete_distribution<int>(std::begin(top_k), std::end(top_k));
}
class TestAddFrom {
public:
template <class D>
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
hwy::RandomState& rng) {
using T = hn::TFromD<D>;
hwy::AlignedFreeUniquePtr<T[]> px =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pe =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> po =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
HWY_ASSERT(px && pe && po);
T* x = px.get() + misalign_a;
T* e = pe.get() + misalign_a;
T* o = po.get() + misalign_b;
for (size_t i = 0; i < count; ++i) {
x[i] = Random<T>(rng);
e[i] = x[i];
o[i] = Random<T>(rng);
}
SimpleAddFrom(o, e, count);
AddFrom(o, x, count, hwy::Profiler::Get(), /*worker=*/0);
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
__LINE__);
}
private:
template <typename T1, typename T2>
static HWY_NOINLINE void SimpleAddFrom(const T1* HWY_RESTRICT other,
T2* HWY_RESTRICT x, size_t size) {
for (size_t i = 0; i < size; ++i) {
x[i] = hwy::ConvertScalarTo<T2>(hwy::ConvertScalarTo<float>(x[i]) +
hwy::ConvertScalarTo<float>(other[i]));
}
}
};
void TestAllAddFrom() {
hn::ForPartialVectors<ForeachCountAndMisalign<TestAddFrom>>()(float());
}
class TestMulByConstAndAdd {
public:
template <class D>
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
hwy::RandomState& rng) {
using T = hn::TFromD<D>;
hwy::AlignedFreeUniquePtr<T[]> px =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pe =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> po =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
HWY_ASSERT(px && pe && po);
T* x = px.get() + misalign_a;
T* e = pe.get() + misalign_a;
T* o = po.get() + misalign_b;
for (size_t i = 0; i < count; ++i) {
x[i] = Random<T>(rng);
e[i] = x[i];
o[i] = Random<T>(rng);
}
T constant = Random<T>(rng);
SimpleMulByConstAndAdd(constant, o, e, count);
MulByConstAndAdd(constant, o, x, count, hwy::Profiler::Get(), /*worker=*/0);
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
__LINE__);
}
private:
template <typename T1, typename T2>
static HWY_NOINLINE void SimpleMulByConstAndAdd(float c,
const T1* HWY_RESTRICT x,
T2* HWY_RESTRICT out,
size_t size) {
for (size_t i = 0; i < size; ++i) {
out[i] = hwy::ConvertScalarTo<T2>(hwy::ConvertScalarTo<float>(out[i]) +
hwy::ConvertScalarTo<float>(x[i]) * c);
}
}
};
void TestAllMulByConstAndAdd() {
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulByConstAndAdd>>()(
float());
}
class TestMulByConst {
public:
template <class D>
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
hwy::RandomState& rng) {
if (misalign_b == 0) return;
using T = hn::TFromD<D>;
hwy::AlignedFreeUniquePtr<T[]> px =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pe =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
HWY_ASSERT(px && pe);
T* x = px.get() + misalign_a;
T* e = pe.get() + misalign_a;
for (size_t i = 0; i < count; ++i) {
x[i] = Random<T>(rng);
e[i] = x[i];
}
T constant = Random<T>(rng);
SimpleMulByConst(constant, e, count);
MulByConst(constant, x, count, hwy::Profiler::Get(), /*worker=*/0);
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
__LINE__);
}
private:
template <typename T1>
static HWY_NOINLINE void SimpleMulByConst(float c, T1* HWY_RESTRICT x,
size_t size) {
for (size_t i = 0; i < size; ++i) {
x[i] = hwy::ConvertScalarTo<T1>(hwy::ConvertScalarTo<float>(x[i]) * c);
}
}
};
void TestAllMulByConst() {
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulByConst>>()(float());
}
struct TestMulByConstTo {
template <class D>
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
hwy::RandomState& rng) {
if (misalign_b == 0) return;
using T = hn::TFromD<D>;
hwy::AlignedFreeUniquePtr<T[]> px =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pe =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pactual =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
HWY_ASSERT(px && pe && pactual);
T* x = px.get() + misalign_a;
T* e = pe.get() + misalign_a;
T* actual = pe.get() + misalign_a;
T constant = Random<T>(rng);
for (size_t i = 0; i < count; ++i) {
x[i] = Random<T>(rng);
e[i] = hwy::ConvertScalarTo<T>(hwy::ConvertScalarTo<float>(x[i]) *
hwy::ConvertScalarTo<float>(constant));
}
MulByConstTo(constant, x, actual, count, hwy::Profiler::Get(),
/*worker=*/0);
hwy::AssertArraySimilar(e, actual, count, hwy::TargetName(HWY_TARGET),
__FILE__, __LINE__);
}
};
void TestAllMulByConstTo() {
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulByConstTo>>()(float());
}
class TestSoftmax {
public:
template <class D>
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
hwy::RandomState& rng) {
if (count == 0) return; // *Softmax would assert
if (misalign_b == 0) return;
using T = hn::TFromD<D>;
hwy::AlignedFreeUniquePtr<T[]> px =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
hwy::AlignedFreeUniquePtr<T[]> pe =
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
HWY_ASSERT(px && pe);
T* x = px.get() + misalign_a;
T* e = pe.get() + misalign_a;
for (size_t i = 0; i < count; ++i) {
x[i] = Random<T>(rng);
e[i] = x[i];
}
SimpleSoftmax(e, count);
Softmax(Logits(x, count), hwy::Profiler::Get(), /*worker=*/0);
T sum = 0.0f;
for (size_t i = 0; i < count; ++i) {
sum += x[i];
double rel = std::abs(x[i] - e[i]) / e[i];
ASSERT_LT(rel, 1e-6) << "Mismatch on coordinate " << i << " out of "
<< count;
}
ASSERT_NEAR(sum, 1.0, 1e-6);
}
private:
static HWY_NOINLINE void SimpleSoftmax(float* HWY_RESTRICT x, size_t size) {
HWY_DASSERT(size != 0);
float sum = 0.0;
const float maxval = *std::max_element(x, x + size);
for (size_t i = 0; i < size; ++i) {
x[i] = std::exp(x[i] - maxval);
sum += x[i];
}
const float scale = 1.0f / sum;
for (size_t i = 0; i < size; ++i) {
x[i] *= scale;
}
}
};
void TestAllSoftmax() {
hn::ForPartialVectors<ForeachCountAndMisalign<TestSoftmax>>()(float());
}
template <size_t k>
struct TestCreateDistribution {
void operator()(hwy::RandomState& rng) {
std::array<float, k> x;
std::array<float, k> e;
for (size_t i = 0; i < k; ++i) {
x[i] = Random<float>(rng);
e[i] = x[i];
}
const float constant = Random<float>(rng);
auto expected = SourceCreateDistribution(e, constant);
auto output = create_distribution(x, constant);
AssertEqual(expected, output, hwy::TargetName(HWY_TARGET), __FILE__,
__LINE__);
}
};
void TestAllCreateDistribution() {
TestCreateDistribution<2048>();
TestCreateDistribution<5000>();
}
struct TestSigmoid {
template <typename T, class D>
void operator()(T, D) const {
std::vector<T> values;
for (int i = -150; i <= 150; ++i) {
values.push_back(hwy::ConvertScalarTo<T>(.1f * i));
}
std::vector<T> result = values;
Sigmoid(result.data(), result.size());
for (size_t i = 0; i < values.size(); i++) {
const float max_error = IsBF16<T>() ? 0.2f : 0.00007f;
const float value = hwy::ConvertScalarTo<float>(values[i]);
const float actual = hwy::ConvertScalarTo<float>(result[i]);
const float expected = (1 / (1 + std::exp(-value)));
EXPECT_NEAR(expected, actual, max_error)
<< (IsBF16<T>() ? "bf16" : "float");
}
}
};
static HWY_NOINLINE void TestAllSigmoid() {
ForeachActivationType1<TestSigmoid>(hn::ScalableTag<float>());
}
struct TestGelu {
template <typename T, class D>
void operator()(T, D) const {
std::vector<T> values;
for (int i = -150; i <= 150; ++i) {
values.push_back(hwy::ConvertScalarTo<T>(.1f * i));
}
std::vector<T> result = values;
Gelu(result.data(), result.size());
for (size_t i = 0; i < values.size(); i++) {
const float max_error = IsBF16<T>() ? 0.2f : 0.00007f;
const float x = hwy::ConvertScalarTo<float>(values[i]);
const float actual = hwy::ConvertScalarTo<float>(result[i]);
const float expected =
x * (0.5f + 0.5f * tanh(x * (0.79788f + 0.035677f * x * x)));
EXPECT_NEAR(expected, actual, max_error)
<< (IsBF16<T>() ? "bf16" : "float");
}
}
};
static HWY_NOINLINE void TestAllGelu() {
ForeachActivationType1<TestGelu>(hn::ScalableTag<float>());
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void ScalarRopeAndMulBy(
const float mul, float* HWY_RESTRICT x, const size_t dim_qkv,
const float* HWY_RESTRICT inv_timescale, const int pos) {
HWY_DASSERT(dim_qkv % 2 == 0);
const size_t half_dim_qkv = dim_qkv / 2;
for (size_t dim = 0; dim < half_dim_qkv; ++dim) {
const float theta = StaticCast<float>(pos) * inv_timescale[dim];
const float cos_val = cosf(theta);
const float sin_val = sinf(theta);
const float x0 = x[dim];
const float x1 = x[dim + half_dim_qkv];
x[dim] = mul * (x0 * cos_val - x1 * sin_val);
x[dim + half_dim_qkv] = mul * (x0 * sin_val + x1 * cos_val);
}
}
void TestRopeAndMulBy() {
ThreadingArgs threading_args;
ThreadingContext ctx(threading_args);
hwy::Profiler& p = ctx.profiler;
const size_t worker = 0;
const ModelConfig config(Model::GEMMA2_9B, Type::kSFP,
ChooseWrapping(Model::GEMMA2_9B));
const size_t dim_qkv = config.layer_configs[0].qkv_dim;
MatStorageT<float> x("x", dim_qkv, ctx.allocator);
RngStream rng = MakeRng();
std::normal_distribution<float> r{0.0, 5.0};
auto random_float = [&r, &rng] { return r(rng); };
for (size_t i = 0; i < dim_qkv; ++i) {
x.Row(0)[i] = random_float();
}
const float qmul = AttentionActivations::ChooseQueryScale(config);
constexpr float kmul = 1.0f;
MatStorageT<float> qexpected("qexpected", dim_qkv, ctx.allocator);
MatStorageT<float> qactual("qactual", dim_qkv, ctx.allocator);
MatStorageT<float> kexpected("kexpected", dim_qkv, ctx.allocator);
MatStorageT<float> kactual("kactual", dim_qkv, ctx.allocator);
MatStorageT<float> kactual2("kactual2", dim_qkv, ctx.allocator);
MatStorageT<float> inv_timescale = CreateInvTimescale(
ctx.allocator, config.layer_configs[0].qkv_dim,
config.layer_configs[0].post_qk == PostQKType::HalfRope);
// Assert VectorizedRope computation is same as regular rope at different pos.
for (size_t pos = 1; pos < 500; pos++) {
// Rope'd Q embeddings with query scale
CopyMat(x, qexpected);
CopyMat(x, qactual);
ScalarRopeAndMulBy(qmul, qexpected.Row(0), dim_qkv, inv_timescale.Row(0),
pos);
RopeAndMulBy(qmul, qactual.Row(0), dim_qkv, inv_timescale.Row(0), pos, p,
worker);
for (size_t i = 0; i < dim_qkv; ++i) {
EXPECT_NEAR(qexpected.Row(0)[i], qactual.Row(0)[i], 1e-4) << " " << i;
}
// Same without query scale
CopyMat(x, qexpected);
CopyMat(x, qactual);
ScalarRopeAndMulBy(1.0f, qexpected.Row(0), dim_qkv, inv_timescale.Row(0),
pos);
Rope(qactual.Row(0), dim_qkv, inv_timescale.Row(0), pos, p, worker);
for (size_t i = 0; i < dim_qkv; ++i) {
EXPECT_NEAR(qexpected.Row(0)[i], qactual.Row(0)[i], 1e-4) << " " << i;
}
// Rope'd K embeddings
CopyMat(x, kexpected);
CopyMat(x, kactual);
CopyMat(x, kactual2);
ScalarRopeAndMulBy(kmul, kexpected.Row(0), dim_qkv, inv_timescale.Row(0),
pos);
RopeAndMulBy(kmul, kactual.Row(0), dim_qkv, inv_timescale.Row(0), pos, p,
worker);
static_assert(kmul == 1.0f, "");
Rope(kactual2.Row(0), dim_qkv, inv_timescale.Row(0), pos, p, worker);
for (size_t i = 0; i < dim_qkv; ++i) {
EXPECT_NEAR(kexpected.Row(0)[i], kactual.Row(0)[i], 1e-4) << " " << i;
}
for (size_t i = 0; i < dim_qkv; ++i) {
EXPECT_NEAR(kexpected.Row(0)[i], kactual2.Row(0)[i], 1e-4) << " " << i;
}
}
}
template <typename T>
static HWY_NOINLINE float ScalarSquaredL2(const T* HWY_RESTRICT a,
size_t size) {
double sum = 0.0;
for (size_t i = 0; i < size; ++i) {
const float f = hwy::ConvertScalarTo<float>(a[i]);
sum += f * f;
}
return static_cast<float>(sum);
}
// Supports bf16 and f32 inputs/outputs, which can be in-place.
// Shared between TestRMSNorm and TestRMSNormInplace.
template <typename XT, typename WT, typename OT>
static HWY_NOINLINE void ScalarRMSNorm(const XT* x,
const WT* HWY_RESTRICT weight, OT* out,
size_t size) {
constexpr float kEps = 1e-6f;
float ss = ScalarSquaredL2(x, size);
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps);
for (size_t j = 0; j < size; j++) {
const float v = hwy::ConvertScalarTo<float>(x[j]);
const float w = hwy::ConvertScalarTo<float>(weight[j]);
// Note 1.0f centering here
out[j] = hwy::ConvertScalarTo<OT>((1.0f + w) * (ss * v));
}
}
struct TestRMSNorm {
template <typename XT, typename WT, typename OT, class D>
void operator()(XT, WT, OT, D) const {
hwy::RandomState rng;
constexpr size_t kSize = 128;
HWY_ALIGN XT vec[kSize];
HWY_ALIGN WT weight[kSize];
HWY_ALIGN OT expected[kSize];
HWY_ALIGN OT actual[kSize];
for (size_t i = 0; i < kSize; ++i) {
vec[i] = hwy::ConvertScalarTo<XT>(RandomGaussian(rng));
weight[i] = hwy::ConvertScalarTo<WT>(RandomGaussian(rng));
}
ScalarRMSNorm(vec, weight, expected, kSize);
RMSNorm(vec, weight, actual, kSize, hwy::Profiler::Get(), /*worker=*/0);
for (size_t i = 0; i < kSize; i++) {
const float e = hwy::ConvertScalarTo<float>(expected[i]);
const float a = hwy::ConvertScalarTo<float>(actual[i]);
if (!IsNear(e, a, 1e-5f)) {
HWY_ABORT("RMSNorm %s %s %s mismatch at %zu: %E %E\n", TypeName<XT>(),
TypeName<WT>(), TypeName<OT>(), i, e, a);
}
}
}
};
void TestAllRMSNorm() {
ForeachActivationType3<TestRMSNorm>(hn::ScalableTag<float>());
}
struct TestRMSNormInplace {
template <typename XT, typename WT, class D>
void operator()(XT, WT, D) const {
hwy::RandomState rng;
constexpr size_t kSize = 128;
HWY_ALIGN XT expected[kSize];
HWY_ALIGN XT actual[kSize];
HWY_ALIGN WT weight[kSize];
for (size_t i = 0; i < kSize; ++i) {
expected[i] = hwy::ConvertScalarTo<XT>(RandomGaussian(rng));
actual[i] = expected[i];
weight[i] = hwy::ConvertScalarTo<WT>(RandomGaussian(rng));
}
ScalarRMSNorm(expected, weight, expected, kSize);
RMSNormInplace(weight, actual, kSize, hwy::Profiler::Get(),
/*worker=*/0);
for (size_t i = 0; i < kSize; i++) {
const float e = hwy::ConvertScalarTo<float>(expected[i]);
const float a = hwy::ConvertScalarTo<float>(actual[i]);
if (!IsNear(e, a, 1e-5f)) {
HWY_ABORT("RMSNormInplace %s %s mismatch at %zu: %E %E\n",
TypeName<XT>(), TypeName<WT>(), i, e, a);
}
}
}
};
void TestAllRMSNormInplace() {
ForeachActivationType2<TestRMSNormInplace>(hn::ScalableTag<float>());
}
void TestLayerNormSimple() {
const size_t kSize = 52;
std::vector<float> values(kSize);
// Alternating 1.0/-1.0, so mean=0.0, var=1.0, rsqrt(var+epsilon)=0.9999995
for (size_t i = 0; i < kSize; ++i) {
values[i] = (i % 2 == 0) ? 1.0f : -1.0f;
}
std::vector<float> scale(kSize, 1.2f);
std::vector<float> bias(kSize, 0.1f);
std::vector<float> result(kSize);
LayerNorm(values.data(), scale.data(), bias.data(), result.data(), kSize);
for (size_t i = 0; i < kSize; i++) {
const float max_error = 1e-6f;
float res = result[i];
// out = (x - 0.0) * 1.2 * 0.9999995 + 0.1 = 1.2999994 / -1.0999994;
float expected = (i % 2 == 0) ? 1.2999994f : -1.0999994f;
EXPECT_NEAR(res, expected, max_error);
}
}
class TestLayerNorm {
public:
template <typename XT, typename WT, typename OT, class D>
void operator()(XT, WT, OT, D) const {
hwy::RandomState rng;
constexpr size_t kSize = 128;
XT vec[kSize];
WT weight[kSize];
WT bias[kSize];
OT expected[kSize];
OT actual[kSize];
for (size_t i = 0; i < kSize; ++i) {
vec[i] = hwy::ConvertScalarTo<XT>(RandomGaussian(rng));
weight[i] = hwy::ConvertScalarTo<WT>(RandomGaussian(rng));
bias[i] = hwy::ConvertScalarTo<WT>(RandomGaussian(rng));
}
double expected_mu, expected_mu2;
ScalarMus(vec, kSize, expected_mu, expected_mu2);
double actual_mu, actual_mu2;
ComputeMoments(vec, kSize, actual_mu, actual_mu2);
ScalarLayerNorm(vec, weight, bias, expected, kSize);
LayerNorm(vec, weight, bias, actual, kSize);
for (size_t i = 0; i < kSize; i++) {
const float e = hwy::ConvertScalarTo<float>(expected[i]);
const float a = hwy::ConvertScalarTo<float>(actual[i]);
if (!IsNear(e, a, 1e-5f)) {
HWY_ABORT("LayerNorm %s %s %s mismatch at %zu: %E %E\n", TypeName<XT>(),
TypeName<WT>(), TypeName<OT>(), i, e, a);
}
}
}
private:
// Computes mean mu and mean of squares mu2 of a vector. Used in
// ScalarLayerNorm.
template <typename T>
static HWY_NOINLINE void ScalarMus(const T* HWY_RESTRICT a, size_t size,
double& mu, double& mu2) {
HWY_ASSERT(size > 0);
double sum = 0.0;
double sum2 = 0.0;
for (size_t i = 0; i < size; ++i) {
const float f = hwy::ConvertScalarTo<float>(a[i]);
sum += f;
sum2 += f * f;
}
mu = sum / size;
mu2 = sum2 / size;
}
// Compare py/flax/linen/normalization.py.
// out = (x - mean) * scale * rsqrt(var + epsilon) + bias
template <typename XT, typename WT, typename OT>
static HWY_NOINLINE void ScalarLayerNorm(const XT* x,
const WT* HWY_RESTRICT scale,
const WT* HWY_RESTRICT bias, OT* out,
size_t size) {
constexpr double kEps = 1e-6;
double mu, mu2;
ScalarMus(x, size, mu, mu2);
double var = mu2 - mu * mu;
constexpr double kZero = 0.0;
var = HWY_MAX(var, kZero);
var = 1.0 / sqrt(var + kEps);
for (size_t j = 0; j < size; j++) {
const float v = hwy::ConvertScalarTo<float>(x[j]);
const float s = hwy::ConvertScalarTo<float>(scale[j]);
const float b = hwy::ConvertScalarTo<float>(bias[j]);
out[j] = hwy::ConvertScalarTo<OT>((v - mu) * s * var + b);
}
}
};
void TestAllLayerNorm() {
ForeachActivationType3<TestLayerNorm>(hn::ScalableTag<float>());
}
void TestSampleTopK() {
hwy::Profiler& p = hwy::Profiler::Get();
const size_t worker = 0;
const size_t kSize = 52;
std::vector<float> logits_vec(kSize);
Logits logits(logits_vec.data(), kSize);
// Create a vector going from -100 to -100+51=49 and take Softmax.
std::iota(logits.begin(), logits.end(), -100.0f);
Softmax(logits, p, worker);
RngStream rng = MakeRng();
float temperature = 1.0f;
// SampleTopK<1> should return the argmax.
std::function<bool(int, float)> accept_token;
int sample = SampleTopK(logits, /*k=*/1, rng, temperature, accept_token);
EXPECT_EQ(sample, 51); // Last is largest.
// Only accept even tokens, expect the last (largest) even index.
accept_token = [](int i, float) { return i % 2 == 0; };
sample = SampleTopK(logits, /*k=*/1, rng, temperature, accept_token);
EXPECT_EQ(sample, 50); // Last even index.
// Reset the logits to a positive, increasing sequence and take Softmax.
std::iota(logits.begin(), logits.end(), 1.0f);
Softmax(logits, p, worker);
// Sample from the top 3, expect one of the top 3 even indices.
for (int i = 0; i < 100; ++i) {
sample = SampleTopK(logits, /*k=*/3, rng, temperature, accept_token);
EXPECT_TRUE(sample == 50 || sample == 48 || sample == 46);
}
// Now set the temperature to 0.0f, which should always return the argmax,
// even for k=3.
temperature = 0.0f;
for (int i = 0; i < 100; ++i) {
sample = SampleTopK(logits, /*k=*/3, rng, temperature, accept_token);
EXPECT_EQ(sample, 50);
}
}
void TestPackTokenAndProb() {
double packed1 = PackTokenAndProb(10, 0.96f);
TokenAndProb unpacked1 = UnpackTokenAndProb(packed1);
EXPECT_EQ(unpacked1.token, 10);
EXPECT_NEAR(unpacked1.prob, 0.96f, 1e-6);
double packed2 = PackTokenAndProb(1000000000, 0.87f);
EXPECT_LT(packed2, packed1);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_BEFORE_TEST(OpsTest);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllAddFrom);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConst);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConstTo);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConstAndAdd);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllSoftmax);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllCreateDistribution);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllSigmoid);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllGelu);
HWY_EXPORT_AND_TEST_P(OpsTest, TestRopeAndMulBy);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllRMSNorm);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllRMSNormInplace);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllLayerNorm);
HWY_EXPORT_AND_TEST_P(OpsTest, TestLayerNormSimple);
HWY_EXPORT_AND_TEST_P(OpsTest, TestSampleTopK);
HWY_EXPORT_AND_TEST_P(OpsTest, TestPackTokenAndProb);
HWY_AFTER_TEST();
} // namespace gcpp
#endif