gemma.cpp/gemma/gemma.cc

178 lines
7.1 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Defines Gemma member functions; the actual implementations are in
// gemma-inl.h, included from instantiations/*.cc.
#include "gemma/gemma.h"
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <utility> // std::move
#include <vector>
#include "compression/io.h" // Path
#include "compression/shared.h"
#include "gemma/common.h"
#include "gemma/weights.h"
#include "ops/ops-inl.h"
#include "paligemma/image.h"
#include "util/threading.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/highway.h"
namespace gcpp {
Gemma::Gemma(const Path& tokenizer_path, const Path& weights,
const ModelInfo& info, NestedPools& pools)
: pools_(pools), tokenizer_(tokenizer_path), info_(info) {
model_.Load(weights, info.model, info.weight, pools_.Pool());
}
Gemma::Gemma(GemmaTokenizer&& tokenizer, const ModelInfo& info,
NestedPools& pools)
: pools_(pools), tokenizer_(std::move(tokenizer)), info_(info) {
HWY_ASSERT(info.weight == Type::kF32);
model_.Allocate(info.model, info.weight, pools_.Pool());
}
Gemma::~Gemma() {
}
// There are >=3 types of the inference code. To reduce compile time,
// we shard them across multiple translation units in instantiations/*.cc.
// This declares the functions defined there. We use overloading because
// explicit instantiations are still too slow to compile.
#define GEMMA_DECLARE(TWEIGHT) \
extern void GenerateSingle(TWEIGHT, const ModelWeightsStorage& model, \
const RuntimeConfig& runtime_config, \
const PromptTokens& prompt, size_t pos, \
size_t prefix_end, KVCache& kv_cache, \
NestedPools& pools, TimingInfo& timing_info); \
extern void GenerateBatch( \
TWEIGHT, const ModelWeightsStorage& model, \
const RuntimeConfig& runtime_config, const QueriesPromptTokens& prompts, \
const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, \
const KVCaches& kv_caches, NestedPools& pools, TimingInfo& timing_info); \
extern void GenerateImageTokens( \
TWEIGHT, const ModelWeightsStorage& model, \
const RuntimeConfig& runtime_config, const Image& image, \
ImageTokens& image_tokens, NestedPools& pools);
GEMMA_DECLARE(float)
GEMMA_DECLARE(BF16)
GEMMA_DECLARE(NuqStream)
GEMMA_DECLARE(SfpStream)
// Adapters to select from the above overloads via CallForModelWeight.
template <class TConfig>
struct GenerateSingleT {
void operator()(const ModelWeightsStorage& model,
const RuntimeConfig& runtime_config,
const PromptTokens& prompt, size_t pos, size_t prefix_end,
KVCache& kv_cache, NestedPools& pools,
TimingInfo& timing_info) const {
GenerateSingle(TConfig(), model, runtime_config, prompt, pos, prefix_end,
kv_cache, pools, timing_info);
}
};
template <class TConfig>
struct GenerateBatchT {
void operator()(const ModelWeightsStorage& model,
const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end,
const KVCaches& kv_caches, NestedPools& pools,
TimingInfo& timing_info) const {
GenerateBatch(TConfig(), model, runtime_config, queries_prompt, queries_pos,
queries_prefix_end, kv_caches, pools, timing_info);
}
};
template <class TConfig>
struct GenerateImageTokensT {
void operator()(const ModelWeightsStorage& model,
const RuntimeConfig& runtime_config, const Image& image,
ImageTokens& image_tokens, NestedPools& pools) const {
GenerateImageTokens(TConfig(), model, runtime_config, image, image_tokens,
pools);
}
};
void Gemma::Generate(const RuntimeConfig& runtime_config,
const PromptTokens& prompt, size_t pos, size_t prefix_end,
KVCache& kv_cache, TimingInfo& timing_info) {
pools_.MaybeStartSpinning(runtime_config.use_spinning);
model_.CallForModelWeight<GenerateSingleT>(
runtime_config, prompt, pos, prefix_end, kv_cache, pools_, timing_info);
pools_.MaybeStopSpinning(runtime_config.use_spinning);
}
void Gemma::GenerateBatch(const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end,
const KVCaches& kv_caches, TimingInfo& timing_info) {
// If we did not get passed prefix ends (size 0), assume 0 and pass that on.
QueriesPos mutable_queries_prefix_end = queries_prefix_end;
std::vector<size_t> prefix_end_vec;
if (queries_prefix_end.size() == 0) {
prefix_end_vec.resize(queries_prompt.size(), 0);
mutable_queries_prefix_end =
QueriesPos(prefix_end_vec.data(), prefix_end_vec.size());
}
pools_.MaybeStartSpinning(runtime_config.use_spinning);
model_.CallForModelWeight<GenerateBatchT>(
runtime_config, queries_prompt, queries_pos, mutable_queries_prefix_end,
kv_caches, pools_, timing_info);
pools_.MaybeStopSpinning(runtime_config.use_spinning);
}
void Gemma::GenerateImageTokens(const RuntimeConfig& runtime_config,
const Image& image, ImageTokens& image_tokens) {
pools_.MaybeStartSpinning(runtime_config.use_spinning);
model_.CallForModelWeight<GenerateImageTokensT>(runtime_config, image,
image_tokens, pools_);
pools_.MaybeStopSpinning(runtime_config.use_spinning);
}
// Non-template functions moved from gemma-inl.h to avoid ODR violations.
void RangeChecks(const ModelConfig& weights_config,
size_t& max_generated_tokens, const size_t prompt_size) {
if (!weights_config.use_local_attention) {
if (max_generated_tokens > weights_config.seq_len) {
fprintf(stderr,
"WARNING: max_generated_tokens %zu > kSeqLen %zu, truncating.\n",
max_generated_tokens, weights_config.seq_len);
max_generated_tokens = weights_config.seq_len;
}
}
HWY_ASSERT(prompt_size > 0);
}
} // namespace gcpp