mirror of https://github.com/google/gemma.cpp.git
168 lines
5.8 KiB
C++
168 lines
5.8 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cmath>
|
|
|
|
#include "gemma/common.h" // kMaxThreads - TODO: remove
|
|
#include "hwy/aligned_allocator.h"
|
|
#include "hwy/base.h" // HWY_DASSERT
|
|
|
|
namespace gcpp {
|
|
|
|
// Owns dynamically-allocated aligned memory for a batch of row vectors.
|
|
// This can be seen as a (batch_size x len) matrix.
|
|
template <typename T>
|
|
class RowVectorBatch {
|
|
public:
|
|
// Default ctor for Activations ctor.
|
|
RowVectorBatch() : batch_size_(0), len_(0) {}
|
|
// Main ctor, called from Activations::Allocate.
|
|
RowVectorBatch(size_t batch_size, size_t len)
|
|
: batch_size_(batch_size), len_(len) {
|
|
mem_ = hwy::AllocateAligned<T>(batch_size * len);
|
|
}
|
|
|
|
// Move-only
|
|
RowVectorBatch(RowVectorBatch&) noexcept = delete;
|
|
RowVectorBatch& operator=(RowVectorBatch&) noexcept = delete;
|
|
RowVectorBatch(RowVectorBatch&&) noexcept = default;
|
|
RowVectorBatch& operator=(RowVectorBatch&&) noexcept = default;
|
|
|
|
size_t BatchSize() const { return batch_size_; }
|
|
size_t Len() const { return len_; }
|
|
|
|
// Returns the given row vector of length `Len()`.
|
|
T* Batch(size_t batch_idx) {
|
|
HWY_DASSERT(batch_idx < batch_size_);
|
|
return mem_.get() + batch_idx * len_;
|
|
}
|
|
|
|
// For MatMul or other operations that process the entire batch at once.
|
|
T* All() { return mem_.get(); }
|
|
const T* Const() const { return mem_.get(); }
|
|
size_t NumBytes() const { return batch_size_ * len_ * sizeof(T); }
|
|
|
|
private:
|
|
hwy::AlignedFreeUniquePtr<T[]> mem_;
|
|
size_t batch_size_; // rows in the matrix
|
|
size_t len_; // columns in the matrix = vector length
|
|
};
|
|
|
|
struct Activations {
|
|
RowVectorBatch<float> x; // input
|
|
RowVectorBatch<float> q; // query, also KV if MHA.
|
|
RowVectorBatch<float> logits;
|
|
|
|
// Attention
|
|
RowVectorBatch<float> pre_att_rms_out;
|
|
RowVectorBatch<float> att; // attention vector
|
|
RowVectorBatch<float> att_out; // attention output
|
|
// Accumulation of attention outputs over heads
|
|
RowVectorBatch<float> att_sums;
|
|
|
|
// Gated FFW
|
|
RowVectorBatch<hwy::bfloat16_t> bf_pre_ffw_rms_out;
|
|
RowVectorBatch<float> C1;
|
|
RowVectorBatch<float> C2;
|
|
RowVectorBatch<float> ffw_out;
|
|
|
|
// Griffin
|
|
RowVectorBatch<float> griffin_x;
|
|
RowVectorBatch<float> griffin_y;
|
|
RowVectorBatch<float> griffin_gate_x;
|
|
RowVectorBatch<float> griffin_multiplier;
|
|
|
|
// Rope
|
|
RowVectorBatch<float> inv_timescale;
|
|
|
|
// For bf16/f32 vectors * bf16 matrix: faster to unpack once beforehand, into
|
|
// per-thread storage.
|
|
// TODO: remove once MatVec is gone.
|
|
RowVectorBatch<float> even_odd;
|
|
|
|
// Multi-Head Attention?
|
|
template <class TConfig>
|
|
static constexpr bool IsMHA() {
|
|
return TConfig::kHeads == TConfig::kKVHeads;
|
|
}
|
|
|
|
// Stride between subsequent queries. Each of Q, K, V are of length kQKVDim,
|
|
// but for MHA we store them as Q,K,V, Q,K,V, .. instead of Q..Q, K..K, V..V.
|
|
template <class TConfig>
|
|
static constexpr size_t QStride() {
|
|
return TConfig::kQKVDim * (IsMHA<TConfig>() ? 3 : 1);
|
|
}
|
|
|
|
template <class TConfig>
|
|
static RowVectorBatch<float> CreateInvTimescale() {
|
|
constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
const size_t rope_dim = TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim;
|
|
RowVectorBatch<float> inv_timescale(1, rope_dim / 2);
|
|
for (size_t dim = 0; dim < rope_dim / 2; ++dim) {
|
|
const float freq_exponents =
|
|
static_cast<float>(2 * dim) / static_cast<float>(rope_dim);
|
|
// Replacing with expf(ln(1E4) * freq_exponents) changes results
|
|
// noticeably.
|
|
inv_timescale.Batch(0)[dim] = 1.0f / std::pow(10000.0f, freq_exponents);
|
|
}
|
|
return inv_timescale;
|
|
}
|
|
|
|
template <class TConfig>
|
|
void Allocate(size_t batch_size) {
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
constexpr size_t kHeads = TConfig::kHeads;
|
|
constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
constexpr size_t kVocabSize = TConfig::kVocabSize;
|
|
constexpr size_t kSeqLen = TConfig::kSeqLen;
|
|
constexpr size_t kGriffinLayers = TConfig::kGriffinLayers;
|
|
|
|
x = RowVectorBatch<float>(batch_size, kModelDim);
|
|
q = RowVectorBatch<float>(batch_size, kHeads * QStride<TConfig>());
|
|
logits = RowVectorBatch<float>(batch_size, kVocabSize);
|
|
|
|
pre_att_rms_out = RowVectorBatch<float>(batch_size, kModelDim);
|
|
att = RowVectorBatch<float>(batch_size, kHeads * kSeqLen);
|
|
att_out = RowVectorBatch<float>(batch_size, kHeads * kQKVDim);
|
|
att_sums = RowVectorBatch<float>(batch_size, kModelDim);
|
|
|
|
bf_pre_ffw_rms_out = RowVectorBatch<hwy::bfloat16_t>(batch_size, kModelDim);
|
|
C1 = RowVectorBatch<float>(batch_size, kFFHiddenDim);
|
|
C2 = RowVectorBatch<float>(batch_size, kFFHiddenDim);
|
|
ffw_out = RowVectorBatch<float>(batch_size, kModelDim);
|
|
|
|
if (kGriffinLayers > 0) {
|
|
griffin_x = RowVectorBatch<float>(batch_size, kModelDim);
|
|
griffin_y = RowVectorBatch<float>(batch_size, kModelDim);
|
|
griffin_gate_x = RowVectorBatch<float>(batch_size, kModelDim);
|
|
griffin_multiplier = RowVectorBatch<float>(batch_size, kModelDim);
|
|
}
|
|
|
|
inv_timescale = CreateInvTimescale<TConfig>();
|
|
|
|
even_odd = RowVectorBatch<float>(1, kModelDim * kMaxThreads);
|
|
}
|
|
};
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|