gemma.cpp/util/threading_context.h

297 lines
12 KiB
C++

// Copyright 2025 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_
#define THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_
// Separate component to ensure `threading.cc` does not have access to
// `ThreadingContext`, because that could deadlock.
#include <stddef.h>
#include <stdint.h>
// IWYU pragma: begin_exports
#include "util/allocator.h"
#include "util/args.h"
#include "util/basics.h" // Tristate
#include "util/threading.h"
#include "util/topology.h"
#include "util/zones.h"
#include "hwy/profiler.h"
// IWYU pragma: end_exports
namespace gcpp {
// Optional arguments for `ThreadingContext` from the command line.
class ThreadingArgs : public ArgsBase<ThreadingArgs> {
public:
ThreadingArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
ThreadingArgs() { Init(); };
// For BoundedTopology:
size_t skip_packages;
size_t max_packages = 1; // some users assign 1 to this, hence non-const.
size_t skip_clusters;
size_t max_clusters;
size_t skip_lps;
size_t max_lps;
Tristate bind;
// For NestedPools:
size_t max_threads; // divided among the detected clusters
Tristate pin; // pin threads?
Tristate spin; // use spin waits?
template <class Visitor>
void ForEach(const Visitor& visitor) {
// These can be used to partition CPU packages/sockets and their
// clusters/CCXs across several program instances. The default is to use
// all available resources on the first package.
visitor(skip_packages, "skip_packages", size_t{0},
"Index of the first socket to use; default 0 = unlimited.", 2);
visitor(skip_clusters, "skip_clusters", size_t{0},
"Index of the first CCX to use; default 0 = unlimited.", 2);
visitor(max_clusters, "max_clusters", size_t{0},
"Max CCXs to use; default 0 = unlimited.", 2);
// "Logical processors" (LPs). These are used when CPU topology is unknown.
visitor(skip_lps, "skip_lps", size_t{0},
"Index of the first LP to use; default 0 = unlimited.", 2);
visitor(max_lps, "max_lps", size_t{0},
"Max LPs to use; default 0 = unlimited.", 2);
// DEPRECATED: superseded by the above fields. If nonzero, `NestedPools`
// will attempt to create this many threads distributed over the detected
// topology.
visitor(max_threads, "num_threads", size_t{0},
"Max threads to use; default 0 = unlimited.", 2);
visitor(pin, "pin", Tristate::kDefault,
"Pin threads? -1 = auto, 0 = no, 1 = yes.", 2);
visitor(spin, "spin", Tristate::kDefault,
"Use spin waits? -1 = auto, 0 = no, 1 = yes.", 2);
visitor(bind, "bind", Tristate::kDefault,
"Bind memory to sockets? -1 = auto, 0 = no, 1 = yes.", 2);
}
};
// Owns threads corresponding to a subset of the system's resources. Because
// this is passed to `Gemma::Generate` (via `MatMulEnv`) rather than defined as
// a singleton, we can have multiple concurrent `Generate` calls within the
// same process, each with their own `ThreadingContext`. Because each context
// may pin its threads, it is important that they use distinct packages,
// clusters, or LPs. For example, to use two packages, the first `args` can have
// `skip_packages` = 0 and the second `skip_packages` = 1.
struct ThreadingContext {
explicit ThreadingContext(const ThreadingArgs& args);
// Returns a worker index compatible with those from `ParallelFor`, assuming
// the current thread is running on one thread per cluster, which happens
// when `Parallelism` is `kAcrossClusters`.
size_t Worker(size_t cluster_idx) const {
return cluster_idx * pools.MaxWorkersPerCluster();
}
// Singleton; pass around a reference to reduce overhead.
hwy::Profiler& profiler;
ProfilerZones profiler_zones;
PoolCallers pool_callers;
// Detects topology, subject to limits imposed by user-specified `args`.
// For example, if `args.max_clusters` is 1, then `topology.NumClusters()`
// will be 1 regardless of the actual system topology.
BoundedTopology topology;
// Ctor depends on `topology` for per-cluster cache sizes.
CacheInfo cache_info;
// Ctor depends on `topology` (for NUMA) and `cache_info` (for step size).
Allocator allocator;
// Per-package/cluster/within cluster pools of threads, matching `topology`.
NestedPools pools;
};
#define GCPP_ZONE(ctx, global_idx, zone_enum) \
PROFILER_ZONE3(ctx.profiler, global_idx, ctx.profiler_zones.Get(zone_enum))
// Describes the strategy for distributing parallel work across cores.
enum class Parallelism : uint8_t {
// Execute using a single-threaded loop on the calling thread. The `worker`
// index passed to the user's `Func` is unique across clusters.
kNone,
// One thread per cluster within the first package. The `worker` index passed
// to the user's `Func` is a `cluster_idx <= NumClusters()`. Some CPUs may
// only have a single cluster, hence `Func` should also contain a nested
// `ParallelFor` with `kWithinCluster`.
kAcrossClusters,
// All cores within the cluster identified by `cluster_idx`. The `worker`
// index passed to the user's `Func` is unique across clusters. Choose this
// strategy if already within a `ParallelFor` call with `kAcrossClusters`,
// or latency is more important than memory bandwidth.
kWithinCluster,
// Equivalent to `kAcrossClusters` if there are multiple clusters, otherwise
// `kWithinCluster`. Use for few or lightweight tasks (this only uses a
// single pool and barrier), or to maximize memory bandwidth availability.
kFlat,
// First statically partitions `kAcrossClusters`, then `kWithinCluster`. This
// utilizes all cores, but has higher fork-join overhead (two barriers); use
// if there are many or heavy tasks.
kHierarchical,
};
// Helper functions used to implement `ParallelFor`, also reused in multiple
// places. User code should call `ParallelFor` instead, which accepts the more
// convenient `Callers` enum.
//
// These call `func(task, worker)` for each task in `[0, num_tasks)`.
// NOTE: the worker argument is actually the `cluster_idx`, so that `Func` can
// pass that to `ParallelForWithinCluster`.
template <class Func>
void ParallelForAcrossClusters(size_t num_tasks, ThreadingContext& ctx,
hwy::pool::Caller caller, const Func& func) {
ctx.pools.AllClusters().Run(
0, num_tasks, caller,
[&](uint64_t task, size_t cluster_idx) { func(task, cluster_idx); });
}
template <class Func>
void ParallelForWithinCluster(size_t num_tasks, ThreadingContext& ctx,
size_t cluster_idx, hwy::pool::Caller caller,
const Func& func) {
const size_t cluster_base = ctx.Worker(cluster_idx);
ctx.pools.Cluster(cluster_idx)
.Run(0, num_tasks, caller, [&](uint64_t task, size_t worker) {
func(task, cluster_base + worker);
});
}
// Calls `func(range, cluster_idx)`, for passing to `*WithinCluster`.
template <class Func>
void ParallelPartitionAcrossClusters(const IndexRange range,
size_t task_multiple, size_t inner_tasks,
ThreadingContext& ctx,
hwy::pool::Caller caller,
const Func& func) {
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
const IndexRangePartition ranges = StaticPartition(
range, ctx.pools.NumClusters() * inner_tasks, task_multiple);
ParallelForAcrossClusters(ranges.NumTasks(), ctx, caller,
[&](uint64_t task, size_t cluster_idx) {
func(ranges.Range(task), cluster_idx);
});
}
// Calls `func(range, worker)`.
template <class Func>
void ParallelPartitionWithinCluster(const IndexRange range,
size_t task_multiple, size_t inner_tasks,
ThreadingContext& ctx, size_t cluster_idx,
hwy::pool::Caller caller,
const Func& func) {
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
const size_t num_workers = ctx.pools.Cluster(cluster_idx).NumWorkers();
const IndexRangePartition ranges =
StaticPartition(range, num_workers * inner_tasks, task_multiple);
ParallelForWithinCluster(
ranges.NumTasks(), ctx, cluster_idx, caller,
[&](uint64_t task, size_t worker) { func(ranges.Range(task), worker); });
}
// Parallelizes across clusters, then within each cluster.
template <class Func>
void HierarchicalParallelFor(size_t num_tasks, ThreadingContext& ctx,
Callers callers, const Func& func) {
const hwy::pool::Caller caller = ctx.pool_callers.Get(callers);
// If at most one task per cluster worker, run on a single cluster to avoid
// the expensive cross-cluster barrier.
{
const size_t cluster_idx = 0;
const size_t cluster_workers = ctx.pools.Cluster(cluster_idx).NumWorkers();
if (HWY_UNLIKELY(num_tasks <= cluster_workers)) {
return ParallelForWithinCluster(num_tasks, ctx, cluster_idx, caller,
func);
}
}
ParallelPartitionAcrossClusters(
IndexRange(0, num_tasks), /*task_multiple=*/1, /*inner_tasks=*/1, ctx,
caller, [&](const IndexRange& cluster_range, size_t cluster_idx) {
ParallelForWithinCluster(cluster_range.Num(), ctx, cluster_idx, caller,
[&](uint64_t i, size_t worker) {
func(cluster_range.begin() + i, worker);
});
});
}
// Calls `func(task, worker)` for each `task` in `[0, num_tasks)`, with the
// number/type of workers determined by `parallelism`. NOTE: worker is actually
// `cluster_idx` for `kAcrossClusters`. The `cluster_idx` argument is for
// `parallelism == {kWithinCluster, kNone}`, and should be 0 if unknown.
template <class Func>
void ParallelFor(Parallelism parallelism, size_t num_tasks,
ThreadingContext& ctx, size_t cluster_idx, Callers callers,
const Func& func) {
HWY_DASSERT(cluster_idx < ctx.topology.NumClusters());
if (cluster_idx != 0) {
// If already running across clusters, only use within-cluster modes.
HWY_DASSERT(parallelism == Parallelism::kNone ||
parallelism == Parallelism::kWithinCluster);
}
const hwy::pool::Caller caller = ctx.pool_callers.Get(callers);
switch (parallelism) {
case Parallelism::kNone: {
const size_t worker = ctx.Worker(cluster_idx);
for (size_t task = 0; task < num_tasks; ++task) {
func(task, worker);
}
return;
}
case Parallelism::kAcrossClusters:
return ParallelForAcrossClusters(
num_tasks, ctx, caller,
[&](uint64_t task, size_t cluster_idx) { func(task, cluster_idx); });
case Parallelism::kWithinCluster:
return ParallelForWithinCluster(num_tasks, ctx, cluster_idx, caller,
func);
case Parallelism::kFlat:
// Choose a single pool: the only cluster, or across all clusters
// (slower synchronization, but more memory bandwidth)
if (HWY_UNLIKELY(ctx.pools.NumClusters() == 1)) {
return ParallelForWithinCluster(num_tasks, ctx, cluster_idx, caller,
func);
}
return ParallelForAcrossClusters(num_tasks, ctx, caller,
[&](uint64_t task, size_t cluster_idx) {
func(task, ctx.Worker(cluster_idx));
});
case Parallelism::kHierarchical:
return HierarchicalParallelFor(num_tasks, ctx, callers, func);
}
}
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_CONTEXT_H_