gemma.cpp/compression/test_util-inl.h

286 lines
10 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Include guard for headers.
#ifndef THIRD_PARTY_GEMMA_CPP_COMPRESSION_TEST_UTIL_INL_H_
#define THIRD_PARTY_GEMMA_CPP_COMPRESSION_TEST_UTIL_INL_H_
#include <stddef.h>
#include <vector>
// IWYU pragma: begin_exports
#include "compression/distortion.h"
#include "util/mat.h"
// IWYU pragma: end_exports
#include "compression/compress.h"
#include "util/threading_context.h"
#endif // THIRD_PARTY_GEMMA_CPP_COMPRESSION_TEST_UTIL_INL_H_
// Include guard for (potentially) SIMD code.
#if defined(THIRD_PARTY_GEMMA_CPP_COMPRESS_TEST_UTIL_TOGGLE) == \
defined(HWY_TARGET_TOGGLE) // NOLINT
#ifdef THIRD_PARTY_GEMMA_CPP_COMPRESS_TEST_UTIL_TOGGLE
#undef THIRD_PARTY_GEMMA_CPP_COMPRESS_TEST_UTIL_TOGGLE
#else
#define THIRD_PARTY_GEMMA_CPP_COMPRESS_TEST_UTIL_TOGGLE
#endif
#include "hwy/highway.h"
// After highway.h
#include "compression/compress-inl.h"
#include "hwy/tests/test_util-inl.h" // IWYU pragma: export
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
// `Packed` is the type passed to `TestT`.
template <typename Packed, template <class> class TestT>
void ForeachRawType() {
const hn::ForGEVectors<128, TestT<Packed>> test;
// The argument selects the type to decode to: BF16 or float.
test(BF16());
test(float());
// Do not include double because it is not supported as an input type - we
// would also have to implement double -> Packed Compress().
}
template <template <class> class TestT>
void ForeachPackedAndRawType() {
ForeachRawType<BF16, TestT>();
ForeachRawType<float, TestT>();
ForeachRawType<SfpStream, TestT>();
if constexpr (GEMMA_ENABLE_NUQ) {
ForeachRawType<NuqStream, TestT>();
}
}
template <class Test, class D>
void ForeachActivationType1(D d) {
Test test;
test(float(), d);
test(BF16(), d);
}
template <class Test, class D>
void ForeachActivationType2(D d) {
Test test;
test(float(), float(), d);
test(float(), BF16(), d);
test(BF16(), float(), d);
test(BF16(), BF16(), d);
}
template <class Test, class D>
void ForeachActivationType3(D d) {
Test test;
test(float(), float(), float(), d);
test(float(), float(), BF16(), d);
test(float(), BF16(), float(), d);
test(float(), BF16(), BF16(), d);
test(BF16(), float(), float(), d);
test(BF16(), float(), BF16(), d);
test(BF16(), BF16(), float(), d);
test(BF16(), BF16(), BF16(), d);
}
// Generates inputs: deterministic, within max SfpStream range.
template <typename MatT>
MatStorageT<MatT> GenerateMat(const Extents2D& extents, MatPadding padding,
ThreadingContext& ctx) {
gcpp::CompressWorkingSet ws;
ws.tls.resize(ctx.pools.MaxWorkers());
MatStorageT<float> raw("raw", extents, ctx.allocator, MatPadding::kPacked);
MatStorageT<MatT> compressed("mat", extents, ctx.allocator, padding);
const float scale = SfpStream::kMax / extents.Area();
ParallelFor(Parallelism::kFlat, extents.rows, ctx, /*cluster_idx=*/0,
Callers::kTest, [&](size_t r, size_t thread) {
float* HWY_RESTRICT row = raw.Row(r);
for (size_t c = 0; c < extents.cols; c++) {
float f = static_cast<float>(r * extents.cols + c) * scale;
if ((r + c) & 1)
f = -f; // Also generate some negative values.
row[c] = f;
}
Compress(raw.Row(r), raw.Cols(), ws.tls[thread],
MakeSpan(compressed.Row(r), extents.cols),
/*packed_ofs=*/0);
});
compressed.SetScale(0.6f); // Arbitrary value, different from 1.
return compressed;
}
// Same, but `extents` describes the transposed matrix and the computation of
// `f` swaps `r` and `c`.
template <typename MatT>
MatStorageT<MatT> GenerateTransposedMat(const Extents2D extents,
MatPadding padding,
ThreadingContext& ctx) {
gcpp::CompressWorkingSet ws;
ws.tls.resize(ctx.pools.MaxWorkers());
MatStorageT<float> raw("raw", extents, ctx.allocator, MatPadding::kPacked);
MatStorageT<MatT> compressed("trans", extents, ctx.allocator, padding);
const float scale = SfpStream::kMax / extents.Area();
ParallelFor(Parallelism::kFlat, extents.rows, ctx, /*cluster_idx=*/0,
Callers::kTest, [&](size_t r, size_t thread) {
float* HWY_RESTRICT row = raw.Row(r);
for (size_t c = 0; c < extents.cols; c++) {
float f = static_cast<float>(c * extents.rows + r) * scale;
if ((r + c) & 1)
f = -f; // Also generate some negative values.
row[c] = f;
}
Compress(raw.Row(r), raw.Cols(), ws.tls[thread],
MakeSpan(compressed.Row(r), extents.cols),
/*packed_ofs=*/0);
});
// Arbitrary value, different from 1, must match `GenerateMat`.
compressed.SetScale(0.6f);
return compressed;
}
// Returns 1-norm, used for estimating tolerable numerical differences.
inline double MaxRowAbsSum(const MatStorageT<float>& a) {
double max_row_abs_sum = 0.0;
for (size_t r = 0; r < a.Rows(); r++) {
const float* row = a.Row(r);
double row_abs_sum = 0.0;
for (size_t c = 0; c < a.Cols(); c++) {
row_abs_sum += hwy::ScalarAbs(row[c]);
}
max_row_abs_sum = HWY_MAX(max_row_abs_sum, row_abs_sum);
}
return max_row_abs_sum;
}
// Returns the maximum absolute value of `a`.
inline float MaxAbs(const MatStorageT<float>& a) {
float max_abs = 0.0f;
for (size_t c = 0; c < a.Cols(); c++) {
for (size_t r = 0; r < a.Rows(); r++) {
const float* row = a.Row(r);
max_abs = HWY_MAX(max_abs, hwy::ScalarAbs(row[c]));
}
}
return max_abs;
}
// B is already transposed.
template <typename TA, typename TB, typename TC>
void AssertClose(const MatPtrT<TA>& A, const MatPtrT<TB>& B,
const MatPtrT<TC>& C_slow, const MatPtrT<TC>& C,
const Allocator& allocator,
std::vector<hwy::AlignedFreeUniquePtr<uint8_t*[]>>& row_ptrs,
int line) {
const hn::ScalableTag<float> df;
const size_t cols = A.Cols();
const size_t B_rows = B.Rows();
// Round up for DecompressAndZeroPad.
MatStorageT<float> a_batch("a_batch", A.Extents(), allocator,
MatPadding::kOdd);
MatStorageT<float> b_trans_batch("b_trans_batch", B.Extents(), allocator,
MatPadding::kOdd);
MatStorageT<float> c_batch("c_batch", Extents2D(A.Rows(), B_rows), allocator,
MatPadding::kOdd);
c_batch.AllocateAndAttachRowPtrs(row_ptrs);
MatStorageT<float> c_slow_batch("c_slow_batch", Extents2D(A.Rows(), B_rows),
allocator, MatPadding::kOdd);
for (size_t m = 0; m < A.Rows(); ++m) {
DecompressAndZeroPad(df, MakeSpan(A.Row(m), cols), 0, a_batch.Row(m), cols);
DecompressAndZeroPad(df, MakeSpan(C.Row(m), B_rows), 0, c_batch.Row(m),
B_rows);
DecompressAndZeroPad(df, MakeSpan(C_slow.Row(m), B_rows), 0,
c_slow_batch.Row(m), B_rows);
}
for (size_t n = 0; n < B_rows; ++n) {
DecompressAndZeroPad(df, MakeSpan(B.Row(n), cols), 0, b_trans_batch.Row(n),
cols);
}
// MatMul rounds inputs to BF16, so error is proportional to the max input
// magnitude, but also to f32 accumulation of rows in A and B.
const double norm = MaxRowAbsSum(a_batch) * MaxRowAbsSum(b_trans_batch);
const float max_abs = MaxAbs(a_batch) * MaxAbs(b_trans_batch);
const double eps_bf16 = hwy::ConvertScalarTo<double>(hwy::Epsilon<BF16>());
const double eps_f32 = hwy::ConvertScalarTo<double>(hwy::Epsilon<float>());
// Dot() uses double-precision summation.
double tolerance = 20 * norm * eps_f32;
// If either is F32, Dot() promotes F32 or even F64, but MatMul demotes the
// F32 to BF16, so add extra tolerance.
if (IsF32<TA>() || IsF32<TB>()) {
tolerance += 2 * max_abs * eps_bf16;
}
if (tolerance > 500.0) {
HWY_WARN("high tolerance %f norm %f maxabs %f\n", tolerance, norm, max_abs);
}
const double rel_tolerance =
1.0 + hwy::ConvertScalarTo<double>(hwy::Epsilon<TC>());
double max_rel = 0.0;
size_t worst_r = 0;
size_t worst_c = 0;
double worst_actual = 0.0;
double worst_expected = 0.0;
size_t num_outside = 0;
for (size_t r = 0; r < A.Rows(); r++) {
const float* expected_row = c_slow_batch.Row(r);
const float* actual_row = c_batch.Row(r);
for (size_t c = 0; c < B.Rows(); c++) {
const double expected_value = static_cast<double>(expected_row[c]);
const double actual_value = static_cast<double>(actual_row[c]);
const bool in_range = expected_value - tolerance <= actual_value &&
actual_value <= expected_value + tolerance;
if (!in_range) {
const double max = HWY_MAX(expected_value, actual_value);
const double min = HWY_MIN(expected_value, actual_value);
const double rel = max / HWY_MAX(min, 1E-6);
if (rel > max_rel) {
worst_expected = expected_value;
worst_actual = actual_value;
worst_r = r;
worst_c = c;
max_rel = rel;
++num_outside;
}
}
}
}
if (max_rel > rel_tolerance) {
hwy::Abort(__FILE__, line,
"(%zu,%zu): expected %f, actual %f, norm %f maxabs %f "
"tolerance %f rel %E max_rel %E num_outside %zu\n",
worst_r, worst_c, worst_expected, worst_actual, norm, max_abs,
tolerance, max_rel, rel_tolerance, num_outside);
}
HWY_ASSERT(hn::AllFalse(
df, hn::IsEitherNaN(hn::Set(df, norm), hn::Set(df, max_abs))));
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#endif // NOLINT