mirror of https://github.com/google/gemma.cpp.git
628 lines
19 KiB
C++
628 lines
19 KiB
C++
// Copyright 2023 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// OrderedDemote2To is not supported by HWY_SCALAR.
|
|
#ifndef HWY_DISABLED_TARGETS
|
|
#define HWY_DISABLED_TARGETS HWY_SCALAR
|
|
#endif
|
|
|
|
#include "ops/ops.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include "compression/compress.h" // BF16
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "util/allocator.h"
|
|
#include "util/test_util.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/tests/hwy_gtest.h"
|
|
|
|
// clang-format off
|
|
#undef HWY_TARGET_INCLUDE
|
|
#define HWY_TARGET_INCLUDE "ops/ops_test.cc" // NOLINT
|
|
// clang-format on
|
|
#include "hwy/foreach_target.h" // IWYU pragma: keep
|
|
#include "hwy/highway.h"
|
|
// After highway.h
|
|
#include "ops/ops-inl.h"
|
|
#include "hwy/tests/test_util-inl.h"
|
|
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace gcpp {
|
|
namespace HWY_NAMESPACE {
|
|
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
|
|
template <class Test>
|
|
struct ForeachCountAndMisalign {
|
|
template <typename T, class D>
|
|
HWY_NOINLINE void operator()(T /*unused*/, D d) const {
|
|
hwy::RandomState rng;
|
|
const size_t N = Lanes(d);
|
|
const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
|
|
|
|
for (size_t count = 0; count < 2 * N; ++count) {
|
|
for (size_t ma : misalignments) {
|
|
for (size_t mb : misalignments) {
|
|
Test()(d, count, ma, mb, rng);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
T Random(hwy::RandomState& rng) {
|
|
const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
|
|
const double val = (bits - 512) / 64.0;
|
|
// Clamp negative to zero for unsigned types.
|
|
return hwy::ConvertScalarTo<T>(
|
|
HWY_MAX(hwy::ConvertScalarTo<double>(hwy::LowestValue<T>()), val));
|
|
}
|
|
|
|
HWY_NOINLINE void SourceAddFrom(const float* HWY_RESTRICT other,
|
|
float* HWY_RESTRICT x, size_t size) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
x[i] += other[i];
|
|
}
|
|
}
|
|
|
|
HWY_NOINLINE void SourceMulBy(const float* HWY_RESTRICT other,
|
|
float* HWY_RESTRICT x, size_t size,
|
|
size_t max_pos) {
|
|
HWY_DASSERT(max_pos <= size);
|
|
for (size_t i = 0; i < max_pos; ++i) {
|
|
x[i] *= other[i];
|
|
}
|
|
}
|
|
|
|
HWY_NOINLINE void SourceMulByConst(float c, float* HWY_RESTRICT x, size_t size,
|
|
size_t max_pos) {
|
|
for (size_t i = 0; i < max_pos; ++i) {
|
|
x[i] *= c;
|
|
}
|
|
}
|
|
|
|
HWY_NOINLINE void SourceMulByConstAndAdd(float c, const float* HWY_RESTRICT x,
|
|
float* HWY_RESTRICT out, size_t size) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
out[i] += x[i] * c;
|
|
}
|
|
}
|
|
|
|
HWY_NOINLINE void SourceSoftmax(float* HWY_RESTRICT x, size_t size,
|
|
size_t mask_pos) {
|
|
HWY_DASSERT(size != 0);
|
|
HWY_DASSERT(mask_pos <= size);
|
|
float sum = 0.0;
|
|
const float maxval = *std::max_element(x, x + mask_pos);
|
|
for (size_t i = 0; i < mask_pos; ++i) {
|
|
x[i] = std::exp(x[i] - maxval);
|
|
sum += x[i];
|
|
}
|
|
const float scale = 1.0f / sum;
|
|
for (size_t i = 0; i < mask_pos; ++i) {
|
|
x[i] *= scale;
|
|
}
|
|
}
|
|
|
|
template <size_t k>
|
|
HWY_NOINLINE std::discrete_distribution<int> SourceCreateDistribution(
|
|
std::array<float, k>& top_k, float temperature) {
|
|
// re-normalize distribution
|
|
for (size_t i = 0; i < k; ++i) {
|
|
top_k[i] = exp(log(top_k[i]) / temperature);
|
|
}
|
|
float denominator = 0.0f;
|
|
for (size_t i = 0; i < k; ++i) {
|
|
denominator += top_k[i];
|
|
}
|
|
denominator = 1.0f / denominator;
|
|
MulByConst(denominator, top_k.data(), k);
|
|
return std::discrete_distribution<int>(std::begin(top_k), std::end(top_k));
|
|
}
|
|
|
|
struct TestAddFrom {
|
|
template <class D>
|
|
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
|
|
hwy::RandomState& rng) {
|
|
using T = hn::TFromD<D>;
|
|
|
|
hwy::AlignedFreeUniquePtr<T[]> px =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> pe =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> po =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
|
|
HWY_ASSERT(px && pe && po);
|
|
|
|
T* x = px.get() + misalign_a;
|
|
T* e = pe.get() + misalign_a;
|
|
T* o = po.get() + misalign_b;
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
x[i] = Random<T>(rng);
|
|
e[i] = x[i];
|
|
o[i] = Random<T>(rng);
|
|
}
|
|
|
|
SourceAddFrom(o, e, count);
|
|
AddFrom(o, x, count);
|
|
|
|
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
|
|
__LINE__);
|
|
}
|
|
};
|
|
|
|
struct TestMulBy {
|
|
template <class D>
|
|
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
|
|
hwy::RandomState& rng) {
|
|
using T = hn::TFromD<D>;
|
|
|
|
hwy::AlignedFreeUniquePtr<T[]> px =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> pe =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> po =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
|
|
HWY_ASSERT(px && pe && po);
|
|
|
|
T* x = px.get() + misalign_a;
|
|
T* e = pe.get() + misalign_a;
|
|
T* o = po.get() + misalign_b;
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
x[i] = Random<T>(rng);
|
|
e[i] = x[i];
|
|
o[i] = Random<T>(rng);
|
|
}
|
|
|
|
SourceMulBy(o, e, count, count);
|
|
MulBy(o, x, count, count);
|
|
|
|
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
|
|
__LINE__);
|
|
}
|
|
};
|
|
|
|
struct TestMulByConstAndAdd {
|
|
template <class D>
|
|
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
|
|
hwy::RandomState& rng) {
|
|
using T = hn::TFromD<D>;
|
|
|
|
hwy::AlignedFreeUniquePtr<T[]> px =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> pe =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> po =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
|
|
HWY_ASSERT(px && pe && po);
|
|
|
|
T* x = px.get() + misalign_a;
|
|
T* e = pe.get() + misalign_a;
|
|
T* o = po.get() + misalign_b;
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
x[i] = Random<T>(rng);
|
|
e[i] = x[i];
|
|
o[i] = Random<T>(rng);
|
|
}
|
|
T constant = Random<T>(rng);
|
|
|
|
SourceMulByConstAndAdd(constant, o, e, count);
|
|
MulByConstAndAdd(constant, o, x, count);
|
|
|
|
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
|
|
__LINE__);
|
|
}
|
|
};
|
|
|
|
struct TestMulByConst {
|
|
template <class D>
|
|
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
|
|
hwy::RandomState& rng) {
|
|
if (misalign_b == 0) return;
|
|
using T = hn::TFromD<D>;
|
|
|
|
hwy::AlignedFreeUniquePtr<T[]> px =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> pe =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
HWY_ASSERT(px && pe);
|
|
|
|
T* x = px.get() + misalign_a;
|
|
T* e = pe.get() + misalign_a;
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
x[i] = Random<T>(rng);
|
|
e[i] = x[i];
|
|
}
|
|
T constant = Random<T>(rng);
|
|
|
|
SourceMulByConst(constant, e, count, count);
|
|
MulByConst(constant, x, count, count);
|
|
|
|
hwy::AssertArraySimilar(e, x, count, hwy::TargetName(HWY_TARGET), __FILE__,
|
|
__LINE__);
|
|
}
|
|
};
|
|
|
|
struct TestSoftmax {
|
|
template <class D>
|
|
void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
|
|
hwy::RandomState& rng) {
|
|
if (count == 0) return; // *Softmax would assert
|
|
if (misalign_b == 0) return;
|
|
using T = hn::TFromD<D>;
|
|
|
|
hwy::AlignedFreeUniquePtr<T[]> px =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
hwy::AlignedFreeUniquePtr<T[]> pe =
|
|
hwy::AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
|
|
HWY_ASSERT(px && pe);
|
|
|
|
T* x = px.get() + misalign_a;
|
|
T* e = pe.get() + misalign_a;
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
x[i] = Random<T>(rng);
|
|
e[i] = x[i];
|
|
}
|
|
|
|
SourceSoftmax(e, count, count);
|
|
Softmax(x, count, count);
|
|
|
|
T sum = 0.0f;
|
|
for (size_t i = 0; i < count; ++i) {
|
|
sum += x[i];
|
|
double rel = std::abs(x[i] - e[i]) / e[i];
|
|
ASSERT_LT(rel, 1e-6) << "Mismatch on coordinate " << i << " out of "
|
|
<< count;
|
|
}
|
|
ASSERT_NEAR(sum, 1.0, 1e-6);
|
|
}
|
|
};
|
|
|
|
template <size_t k>
|
|
struct TestCreateDistribution {
|
|
void operator()(hwy::RandomState& rng) {
|
|
std::array<float, k> x;
|
|
std::array<float, k> e;
|
|
|
|
for (size_t i = 0; i < k; ++i) {
|
|
x[i] = Random<float>(rng);
|
|
e[i] = x[i];
|
|
}
|
|
const float constant = Random<float>(rng);
|
|
auto expected = SourceCreateDistribution(e, constant);
|
|
auto output = create_distribution(x, constant);
|
|
|
|
AssertEqual(expected, output, hwy::TargetName(HWY_TARGET), __FILE__,
|
|
__LINE__);
|
|
}
|
|
};
|
|
|
|
void TestAllAddFrom() {
|
|
hn::ForPartialVectors<ForeachCountAndMisalign<TestAddFrom>>()(float());
|
|
}
|
|
|
|
void TestAllMulBy() {
|
|
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulBy>>()(float());
|
|
}
|
|
|
|
void TestAllMulByConst() {
|
|
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulByConst>>()(float());
|
|
}
|
|
|
|
void TestAllMulByConstAndAdd() {
|
|
hn::ForPartialVectors<ForeachCountAndMisalign<TestMulByConstAndAdd>>()(
|
|
float());
|
|
}
|
|
|
|
void TestAllSoftmax() {
|
|
hn::ForPartialVectors<ForeachCountAndMisalign<TestSoftmax>>()(float());
|
|
}
|
|
|
|
void TestAllCreateDistribution() {
|
|
TestCreateDistribution<2048>();
|
|
TestCreateDistribution<5000>();
|
|
}
|
|
|
|
void TestSigmoid() {
|
|
std::vector<float> values;
|
|
for (int i = -150; i <= 150; ++i) {
|
|
values.push_back(.1f * i);
|
|
}
|
|
std::vector<float> result = values;
|
|
Sigmoid(result.data(), result.size());
|
|
|
|
for (size_t i = 0; i < values.size(); i++) {
|
|
const float max_error = 0.00007;
|
|
float value = values[i];
|
|
float approx = result[i];
|
|
float expected = (1 / (1 + std::exp(-values[i])));
|
|
EXPECT_NEAR(approx, expected, max_error) << "Input: " << value;
|
|
}
|
|
}
|
|
|
|
static HWY_NOINLINE HWY_MAYBE_UNUSED void ScalarRopeAndMulBy(
|
|
const float mul, const float* HWY_RESTRICT x, size_t dim_qkv,
|
|
const float* HWY_RESTRICT inv_timescale, int pos,
|
|
float* HWY_RESTRICT x_out) {
|
|
HWY_DASSERT(dim_qkv % 2 == 0);
|
|
const size_t half_dim_qkv = dim_qkv / 2;
|
|
for (size_t dim = 0; dim < half_dim_qkv; ++dim) {
|
|
const float theta = StaticCast<float>(pos) * inv_timescale[dim];
|
|
const float cos_val = cosf(theta);
|
|
const float sin_val = sinf(theta);
|
|
const float x0 = x[dim];
|
|
const float x1 = x[dim + half_dim_qkv];
|
|
x_out[dim] = mul * (x0 * cos_val - x1 * sin_val);
|
|
x_out[dim + half_dim_qkv] = mul * (x0 * sin_val + x1 * cos_val);
|
|
}
|
|
}
|
|
|
|
void TestRopeAndMulBy() {
|
|
ModelConfig config = ConfigFromModel(Model::GEMMA2_9B);
|
|
int dim_qkv = config.layer_configs[0].qkv_dim;
|
|
RowVectorBatch<float> x(Extents2D(1, dim_qkv));
|
|
|
|
std::mt19937 gen;
|
|
gen.seed(0x12345678);
|
|
std::normal_distribution<float> r{0.0, 5.0};
|
|
auto random_float = [&r, &gen] { return r(gen); };
|
|
|
|
for (int i = 0; i < dim_qkv; ++i) {
|
|
x.All()[i] = random_float();
|
|
}
|
|
|
|
const float qmul = ChooseQueryScale(config);
|
|
const float kmul = 1.0;
|
|
|
|
std::vector<float> qexpected(dim_qkv);
|
|
std::vector<float> qactual(dim_qkv);
|
|
std::vector<float> kexpected(dim_qkv);
|
|
std::vector<float> kactual(dim_qkv);
|
|
RowVectorBatch<float> inv_timescale = gcpp::CreateInvTimescale(
|
|
config.layer_configs[0].qkv_dim,
|
|
config.layer_configs[0].post_qk == PostQKType::HalfRope);
|
|
// Assert VectorizedRope computation is same as regular rope at different pos.
|
|
for (int pos = 1; pos < 500; pos++) {
|
|
// Rope'd Q embeddings
|
|
ScalarRopeAndMulBy(qmul, x.Const(), dim_qkv, inv_timescale.Const(), pos,
|
|
qexpected.data());
|
|
RopeAndMulBy(qmul, x.Const(), dim_qkv, inv_timescale.Const(), pos,
|
|
qactual.data());
|
|
|
|
for (int i = 0; i < dim_qkv; ++i) {
|
|
EXPECT_NEAR(qactual[i], qexpected[i], 1e-4)
|
|
<< "qIndex:" << i << "qInput:" << qactual[i];
|
|
}
|
|
|
|
// Rope'd K embeddings
|
|
ScalarRopeAndMulBy(kmul, x.Const(), dim_qkv, inv_timescale.Const(), pos,
|
|
kexpected.data());
|
|
RopeAndMulBy(kmul, x.Const(), dim_qkv, inv_timescale.Const(), pos,
|
|
kactual.data());
|
|
|
|
for (int i = 0; i < dim_qkv; ++i) {
|
|
EXPECT_NEAR(kactual[i], kexpected[i], 1e-4)
|
|
<< "kIndex:" << i << "kInput:" << kactual[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
HWY_NOINLINE float ScalarSquaredL2(const T* HWY_RESTRICT a, size_t size) {
|
|
double sum = 0.0;
|
|
for (size_t i = 0; i < size; ++i) {
|
|
const float f = hwy::ConvertScalarTo<float>(a[i]);
|
|
sum += f * f;
|
|
}
|
|
return static_cast<float>(sum);
|
|
}
|
|
|
|
// Supports bf16 and f32 inputs/outputs, which can be in-place.
|
|
template <typename VecT, typename WeightT, typename OutT>
|
|
HWY_NOINLINE void ScalarRMSNorm(const VecT* x,
|
|
const WeightT* HWY_RESTRICT weight, OutT* out,
|
|
size_t size) {
|
|
constexpr float kEps = 1e-6f;
|
|
float ss = ScalarSquaredL2(x, size);
|
|
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps);
|
|
for (size_t j = 0; j < size; j++) {
|
|
const float v = hwy::ConvertScalarTo<float>(x[j]);
|
|
const float w = hwy::ConvertScalarTo<float>(weight[j]);
|
|
// Note 1.0f centering here
|
|
out[j] = hwy::ConvertScalarTo<OutT>((1.0f + w) * (ss * v));
|
|
}
|
|
}
|
|
|
|
template <typename VecT, typename WeightT, typename OutT>
|
|
void TestRMSNorm(hwy::RandomState& rng) {
|
|
constexpr size_t kSize = 128;
|
|
HWY_ALIGN VecT vec[kSize];
|
|
HWY_ALIGN WeightT weight[kSize];
|
|
HWY_ALIGN OutT expected[kSize];
|
|
HWY_ALIGN OutT actual[kSize];
|
|
|
|
for (size_t i = 0; i < kSize; ++i) {
|
|
vec[i] = hwy::ConvertScalarTo<VecT>(RandomGaussian(rng));
|
|
weight[i] = hwy::ConvertScalarTo<WeightT>(RandomGaussian(rng));
|
|
}
|
|
|
|
ScalarRMSNorm(vec, weight, expected, kSize);
|
|
RMSNorm(vec, weight, actual, kSize);
|
|
|
|
for (size_t i = 0; i < kSize; i++) {
|
|
const float e = hwy::ConvertScalarTo<float>(expected[i]);
|
|
const float a = hwy::ConvertScalarTo<float>(actual[i]);
|
|
if (!IsNear(e, a, 1e-5f)) {
|
|
HWY_ABORT("RMSNorm %s %s %s mismatch at %zu: %E %E\n", TypeName<VecT>(),
|
|
TypeName<WeightT>(), TypeName<OutT>(), i, e, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestAllRMSNorm() {
|
|
hwy::RandomState rng;
|
|
TestRMSNorm<float, float, float>(rng);
|
|
TestRMSNorm<float, float, BF16>(rng);
|
|
TestRMSNorm<float, BF16, float>(rng);
|
|
TestRMSNorm<float, BF16, BF16>(rng);
|
|
TestRMSNorm<BF16, float, float>(rng);
|
|
TestRMSNorm<BF16, float, BF16>(rng);
|
|
TestRMSNorm<BF16, BF16, float>(rng);
|
|
TestRMSNorm<BF16, BF16, BF16>(rng);
|
|
}
|
|
|
|
void TestLayerNormSimple() {
|
|
const size_t kSize = 52;
|
|
std::vector<float> values(kSize);
|
|
// Alternating 1.0/-1.0, so mean=0.0, var=1.0, rsqrt(var+epsilon)=0.9999995
|
|
for (int i = 0; i < kSize; ++i) {
|
|
values[i] = (i % 2 == 0) ? 1.0f : -1.0f;
|
|
}
|
|
std::vector<float> scale(kSize, 1.2f);
|
|
std::vector<float> bias(kSize, 0.1f);
|
|
std::vector<float> result(kSize);
|
|
LayerNorm(values.data(), scale.data(), bias.data(), result.data(), kSize);
|
|
|
|
for (size_t i = 0; i < kSize; i++) {
|
|
const float max_error = 1e-6f;
|
|
float value = values[i];
|
|
float res = result[i];
|
|
// out = (x - 0.0) * 1.2 * 0.9999995 + 0.1 = 1.2999994 / -1.0999994;
|
|
float expected = (i % 2 == 0) ? 1.2999994f : -1.0999994f;
|
|
EXPECT_NEAR(res, expected, max_error) << "Input: " << value;
|
|
}
|
|
}
|
|
|
|
// Note: there is no vectorized implementation of LayerNorm yet. So this test
|
|
// currently only checks that the scalar version can be called for the below
|
|
// combinations of float/BF16 inputs and outputs.
|
|
template <typename VecT, typename WeightT, typename OutT>
|
|
void TestLayerNorm(hwy::RandomState& rng) {
|
|
constexpr size_t kSize = 128;
|
|
VecT vec[kSize];
|
|
WeightT weight[kSize];
|
|
WeightT bias[kSize];
|
|
OutT expected[kSize];
|
|
OutT actual[kSize];
|
|
|
|
for (size_t i = 0; i < kSize; ++i) {
|
|
vec[i] = hwy::ConvertScalarTo<VecT>(RandomGaussian(rng));
|
|
weight[i] = hwy::ConvertScalarTo<WeightT>(RandomGaussian(rng));
|
|
bias[i] = hwy::ConvertScalarTo<WeightT>(RandomGaussian(rng));
|
|
}
|
|
|
|
ScalarLayerNorm(vec, weight, bias, expected, kSize);
|
|
LayerNorm(vec, weight, bias, actual, kSize);
|
|
|
|
for (size_t i = 0; i < kSize; i++) {
|
|
const float e = hwy::ConvertScalarTo<float>(expected[i]);
|
|
const float a = hwy::ConvertScalarTo<float>(actual[i]);
|
|
if (!IsNear(e, a, 1e-5f)) {
|
|
HWY_ABORT("LayerNorm %s %s %s mismatch at %zu: %E %E\n", TypeName<VecT>(),
|
|
TypeName<WeightT>(), TypeName<OutT>(), i, e, a);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestAllLayerNorm() {
|
|
hwy::RandomState rng;
|
|
TestLayerNorm<float, float, float>(rng);
|
|
TestLayerNorm<float, float, BF16>(rng);
|
|
TestLayerNorm<float, BF16, float>(rng);
|
|
TestLayerNorm<float, BF16, BF16>(rng);
|
|
}
|
|
|
|
void TestSampleTopK() {
|
|
const size_t kSize = 52;
|
|
std::vector<float> logits(kSize);
|
|
// Create a vector going from -100 to -100+51=49 and take Softmax.
|
|
std::iota(logits.begin(), logits.end(), -100.0f);
|
|
Softmax(logits.data(), kSize);
|
|
std::mt19937 gen;
|
|
gen.seed(0x12345678);
|
|
float temperature = 1.0f;
|
|
// SampleTopK<1> should return the argmax.
|
|
std::function<bool(int, float)> accept_token;
|
|
int sample =
|
|
SampleTopK(logits.data(), /*k=*/1, kSize, gen, temperature, accept_token);
|
|
EXPECT_EQ(sample, 51); // Last is largest.
|
|
// Only accept even tokens, expect the last (largest) even index.
|
|
accept_token = [](int i, float) { return i % 2 == 0; };
|
|
sample =
|
|
SampleTopK(logits.data(), /*k=*/1, kSize, gen, temperature, accept_token);
|
|
EXPECT_EQ(sample, 50); // Last even index.
|
|
// Reset the logits to a positive, increasing sequence and take Softmax.
|
|
std::iota(logits.begin(), logits.end(), 1.0f);
|
|
Softmax(logits.data(), kSize);
|
|
// Sample from the top 3, expect one of the top 3 even indices.
|
|
for (int i = 0; i < 100; ++i) {
|
|
sample = SampleTopK(logits.data(), /*k=*/3, kSize, gen, temperature,
|
|
accept_token);
|
|
EXPECT_TRUE(sample == 50 || sample == 48 || sample == 46);
|
|
}
|
|
// Now set the temperature to 0.0f, which should always return the argmax,
|
|
// even for k=3.
|
|
temperature = 0.0f;
|
|
for (int i = 0; i < 100; ++i) {
|
|
sample = SampleTopK(logits.data(), /*k=*/3, kSize, gen, temperature,
|
|
accept_token);
|
|
EXPECT_EQ(sample, 50);
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-readability-namespace-comments)
|
|
} // namespace HWY_NAMESPACE
|
|
} // namespace gcpp
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#if HWY_ONCE
|
|
|
|
namespace gcpp {
|
|
HWY_BEFORE_TEST(OpsTest);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllAddFrom);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulBy);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConst);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConstAndAdd);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllSoftmax);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllCreateDistribution);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestSigmoid);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestRopeAndMulBy);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllRMSNorm);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllLayerNorm);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestLayerNormSimple);
|
|
HWY_EXPORT_AND_TEST_P(OpsTest, TestSampleTopK);
|
|
HWY_AFTER_TEST();
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif
|