mirror of https://github.com/google/gemma.cpp.git
259 lines
8.5 KiB
C++
259 lines
8.5 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gemma/weights.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "compression/blob_store.h"
|
|
#include "compression/compress.h"
|
|
#include "compression/io.h" // Path
|
|
#include "compression/shared.h"
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "hwy/aligned_allocator.h"
|
|
#include "hwy/base.h" // HWY_ABORT
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/stats.h"
|
|
|
|
namespace gcpp {
|
|
|
|
template <typename T>
|
|
struct TensorLoader {
|
|
void operator()(ModelWeightsPtrs<T>& weights, ForEachType fet,
|
|
ReadFromBlobStore& loader) {
|
|
weights.ForEachTensor(
|
|
{&weights}, fet,
|
|
[&loader](const char* name, hwy::Span<MatPtr*> tensors) {
|
|
loader(name, tensors);
|
|
});
|
|
}
|
|
};
|
|
|
|
BlobError ModelWeightsStorage::Load(const Path& weights, Model model_type,
|
|
Type weight_type, PromptWrapping wrapping,
|
|
hwy::ThreadPool& pool,
|
|
std::string* tokenizer_proto) {
|
|
PROFILER_ZONE("Startup.LoadModelWeightsPtrs");
|
|
if (!weights.Exists()) {
|
|
HWY_ABORT("The model weights file '%s' does not exist.",
|
|
weights.path.c_str());
|
|
}
|
|
ReadFromBlobStore loader(weights);
|
|
ForEachType fet =
|
|
loader.HaveToc() ? ForEachType::kLoadWithToc : ForEachType::kLoadNoToc;
|
|
std::vector<float> scales;
|
|
if (fet == ForEachType::kLoadWithToc) {
|
|
BlobError err = loader.LoadConfig(config_);
|
|
if (err != 0 || config_.model_dim == 0) {
|
|
fprintf(stderr, "Failed to load model config: %d\n", err);
|
|
return err;
|
|
}
|
|
if (tokenizer_proto != nullptr) {
|
|
err = loader.LoadTokenizer(*tokenizer_proto);
|
|
if (err != 0) {
|
|
fprintf(stderr, "Failed to load tokenizer: %d\n", err);
|
|
return err;
|
|
}
|
|
}
|
|
} else {
|
|
if (weight_type == Type::kUnknown || model_type == Model::UNKNOWN) {
|
|
fprintf(stderr,
|
|
"weight type (%d) and model type (%d) must be specified when "
|
|
"no config is present in weights file\n",
|
|
static_cast<int>(weight_type), static_cast<int>(model_type));
|
|
return __LINE__;
|
|
}
|
|
// No Toc-> no config.
|
|
config_ = ConfigFromModel(model_type);
|
|
config_.weight = weight_type;
|
|
config_.wrapping = wrapping;
|
|
scales.resize(config_.num_tensor_scales + config_.num_vit_scales);
|
|
}
|
|
CreateForType(config_.weight, pool);
|
|
CallForModelWeightT<TensorLoader>(fet, loader);
|
|
if (!scales.empty()) {
|
|
loader.LoadScales(scales.data(), scales.size());
|
|
}
|
|
BlobError err = loader.ReadAll(pool, model_storage_);
|
|
if (err != 0) {
|
|
fprintf(stderr, "Failed to load model weights: %d\n", err);
|
|
return err;
|
|
}
|
|
if (!scales.empty()) {
|
|
GetOrApplyScales(scales);
|
|
}
|
|
if (fet == ForEachType::kLoadNoToc) {
|
|
PROFILER_ZONE("Startup.Reshape");
|
|
AllocAndCopyWithTranspose(pool);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <typename T>
|
|
struct TensorSaver {
|
|
// Adds all the tensors to the blob writer.
|
|
void operator()(ModelWeightsPtrs<T>& weights, ForEachType fet,
|
|
WriteToBlobStore& writer) {
|
|
weights.ForEachTensor(
|
|
{&weights}, fet,
|
|
[&writer](const char* name, hwy::Span<MatPtr*> tensors) {
|
|
tensors[0]->CallUpcasted(writer, name);
|
|
});
|
|
}
|
|
};
|
|
|
|
BlobError ModelWeightsStorage::Save(const std::string& tokenizer,
|
|
const Path& weights,
|
|
hwy::ThreadPool& pool) {
|
|
WriteToBlobStore writer(pool);
|
|
ForEachType fet = ForEachType::kLoadWithToc;
|
|
CallForModelWeightT<TensorSaver>(fet, writer);
|
|
writer.AddTokenizer(tokenizer);
|
|
int err = writer.WriteAll(weights, &config_);
|
|
if (err != 0) {
|
|
fprintf(stderr, "Failed to load model weights: %d\n", err);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ModelWeightsStorage::Allocate(const ModelConfig& config, Type weight_type,
|
|
hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Startup.AllocateModelWeightsPtrs");
|
|
config_ = config;
|
|
config_.weight = weight_type;
|
|
CreateForType(weight_type, pool);
|
|
if (float_weights_) float_weights_->Allocate(model_storage_, pool);
|
|
if (bf16_weights_) bf16_weights_->Allocate(model_storage_, pool);
|
|
if (sfp_weights_) sfp_weights_->Allocate(model_storage_, pool);
|
|
if (nuq_weights_) nuq_weights_->Allocate(model_storage_, pool);
|
|
}
|
|
|
|
class WeightInitializer {
|
|
public:
|
|
WeightInitializer(std::mt19937& gen) : dist_(0.0f, 1.0f), gen_(gen) {}
|
|
|
|
void operator()(const char* name, hwy::Span<MatPtr*> tensors) {
|
|
float* data = tensors[0]->data<float>();
|
|
for (size_t i = 0; i < tensors[0]->NumElements(); ++i) {
|
|
data[i] = dist_(gen_);
|
|
}
|
|
tensors[0]->set_scale(1.0f);
|
|
}
|
|
|
|
private:
|
|
std::normal_distribution<float> dist_;
|
|
std::mt19937& gen_;
|
|
};
|
|
|
|
void ModelWeightsStorage::RandInit(std::mt19937& gen) {
|
|
HWY_ASSERT(float_weights_);
|
|
WeightInitializer init(gen);
|
|
ModelWeightsPtrs<float>::ForEachTensor({float_weights_.get()},
|
|
ForEachType::kLoadNoToc, init);
|
|
}
|
|
|
|
void ModelWeightsStorage::ZeroInit() {
|
|
if (float_weights_) float_weights_->ZeroInit();
|
|
if (bf16_weights_) bf16_weights_->ZeroInit();
|
|
if (sfp_weights_) sfp_weights_->ZeroInit();
|
|
if (nuq_weights_) nuq_weights_->ZeroInit();
|
|
}
|
|
|
|
void ModelWeightsStorage::GetOrApplyScales(std::vector<float>& scales) {
|
|
if (float_weights_) float_weights_->GetOrApplyScales(scales);
|
|
if (bf16_weights_) bf16_weights_->GetOrApplyScales(scales);
|
|
if (sfp_weights_) sfp_weights_->GetOrApplyScales(scales);
|
|
if (nuq_weights_) nuq_weights_->GetOrApplyScales(scales);
|
|
}
|
|
|
|
void ModelWeightsStorage::AllocAndCopyWithTranspose(hwy::ThreadPool& pool) {
|
|
if (float_weights_)
|
|
float_weights_->AllocAndCopyWithTranspose(pool, model_storage_);
|
|
if (bf16_weights_)
|
|
bf16_weights_->AllocAndCopyWithTranspose(pool, model_storage_);
|
|
if (sfp_weights_)
|
|
sfp_weights_->AllocAndCopyWithTranspose(pool, model_storage_);
|
|
if (nuq_weights_)
|
|
nuq_weights_->AllocAndCopyWithTranspose(pool, model_storage_);
|
|
}
|
|
|
|
void ModelWeightsStorage::CopyWithTranspose(hwy::ThreadPool& pool) {
|
|
if (float_weights_) float_weights_->CopyWithTranspose(pool);
|
|
if (bf16_weights_) bf16_weights_->CopyWithTranspose(pool);
|
|
if (sfp_weights_) sfp_weights_->CopyWithTranspose(pool);
|
|
if (nuq_weights_) nuq_weights_->CopyWithTranspose(pool);
|
|
}
|
|
|
|
namespace {
|
|
|
|
void LogVec(const char* name, const float* data, size_t len) {
|
|
hwy::Stats stats;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
stats.Notify(data[i]);
|
|
}
|
|
printf("%-20s %12zu %13.10f %8.5f %13.10f\n",
|
|
name, len, stats.Min(), stats.Mean(), stats.Max());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void ModelWeightsStorage::LogWeightStats() {
|
|
size_t total_weights = 0;
|
|
// Only for float weights.
|
|
ModelWeightsPtrs<float>::ForEachTensor(
|
|
{float_weights_.get()}, ForEachType::kInitNoToc,
|
|
[&total_weights](const char* name, hwy::Span<MatPtr*> tensors) {
|
|
const MatPtr& tensor = *tensors[0];
|
|
if (tensor.scale() != 1.0f) {
|
|
printf("[scale=%f] ", tensor.scale());
|
|
}
|
|
LogVec(name, tensor.data<float>(), tensor.NumElements());
|
|
total_weights += tensor.NumElements();
|
|
});
|
|
printf("%-20s %12zu\n", "Total", total_weights);
|
|
}
|
|
|
|
void ModelWeightsStorage::CreateForType(Type weight_type,
|
|
hwy::ThreadPool& pool) {
|
|
switch (weight_type) {
|
|
case Type::kF32:
|
|
float_weights_ = std::make_unique<ModelWeightsPtrs<float>>(config_);
|
|
break;
|
|
case Type::kBF16:
|
|
bf16_weights_ = std::make_unique<ModelWeightsPtrs<BF16>>(config_);
|
|
break;
|
|
case Type::kSFP:
|
|
sfp_weights_ =
|
|
std::make_unique<ModelWeightsPtrs<SfpStream>>(config_);
|
|
break;
|
|
case Type::kNUQ:
|
|
nuq_weights_ =
|
|
std::make_unique<ModelWeightsPtrs<NuqStream>>(config_);
|
|
break;
|
|
default:
|
|
HWY_ABORT("Weight type %d unsupported.", static_cast<int>(weight_type));
|
|
}
|
|
}
|
|
|
|
} // namespace gcpp
|