gemma.cpp/gemma/activations.h

132 lines
4.6 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
#include <stddef.h>
#include <cmath>
#include "compression/shared.h" // BF16
#include "gemma/configs.h"
#include "ops/matmul.h" // MatMulEnv
#include "util/allocator.h" // RowVectorBatch
#include "util/threading.h"
#include "hwy/base.h" // HWY_DASSERT
#include "hwy/contrib/thread_pool/thread_pool.h"
namespace gcpp {
struct Activations {
explicit Activations(const ModelConfig& config)
: weights_config(config),
layer_config(config.layer_configs[0]),
seq_len(config.seq_len),
cache_pos_size(config.CachePosSize()) {}
RowVectorBatch<float> x; // input
RowVectorBatch<float> q; // query, also KV if MHA.
RowVectorBatch<float> logits;
// Attention
RowVectorBatch<float> pre_att_rms_out;
RowVectorBatch<float> att; // attention vector
RowVectorBatch<float> att_out; // attention output
// Accumulation of attention outputs over heads
RowVectorBatch<float> att_sums;
// Gated FFW
RowVectorBatch<BF16> bf_pre_ffw_rms_out;
RowVectorBatch<float> C1;
RowVectorBatch<float> C2;
RowVectorBatch<float> ffw_out;
// Griffin
RowVectorBatch<float> griffin_x;
RowVectorBatch<float> griffin_y;
RowVectorBatch<float> griffin_gate_x;
RowVectorBatch<float> griffin_multiplier;
// Rope
RowVectorBatch<float> inv_timescale;
MatMulEnv env;
PostQKType post_qk = PostQKType::Rope;
// And the config.
const ModelConfig& weights_config;
const LayerConfig& layer_config;
size_t seq_len;
size_t cache_pos_size = 0;
static RowVectorBatch<float> CreateInvTimescale(size_t qkv_dim,
PostQKType post_qk) {
const size_t rope_dim =
post_qk == PostQKType::HalfRope ? qkv_dim / 2 : qkv_dim;
RowVectorBatch<float> inv_timescale(Extents2D(1, rope_dim / 2));
for (size_t dim = 0; dim < rope_dim / 2; ++dim) {
const float freq_exponents =
static_cast<float>(2 * dim) / static_cast<float>(rope_dim);
// Replacing with expf(ln(1E4) * freq_exponents) changes results
// noticeably.
inv_timescale.Batch(0)[dim] = 1.0f / std::pow(10000.0f, freq_exponents);
}
return inv_timescale;
}
void Allocate(size_t batch_size, NestedPools& pools) {
post_qk = layer_config.post_qk;
const size_t model_dim = weights_config.model_dim;
const size_t ff_hidden_dim = layer_config.ff_hidden_dim;
const size_t vocab_size = weights_config.vocab_size;
x = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
q = RowVectorBatch<float>(
Extents2D(batch_size, layer_config.heads * layer_config.QStride()));
if (vocab_size > 0) {
logits = RowVectorBatch<float>(Extents2D(batch_size, vocab_size));
}
pre_att_rms_out = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
att = RowVectorBatch<float>(
Extents2D(batch_size, layer_config.heads * weights_config.seq_len));
att_out = RowVectorBatch<float>(
Extents2D(batch_size, layer_config.heads * layer_config.qkv_dim));
att_sums = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
bf_pre_ffw_rms_out = RowVectorBatch<BF16>(Extents2D(batch_size, model_dim));
C1 = RowVectorBatch<float>(Extents2D(batch_size, ff_hidden_dim));
C2 = RowVectorBatch<float>(Extents2D(batch_size, ff_hidden_dim));
ffw_out = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
if (layer_config.type == LayerAttentionType::kGriffinRecurrentBlock) {
griffin_x = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
griffin_y = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
griffin_gate_x = RowVectorBatch<float>(Extents2D(batch_size, model_dim));
griffin_multiplier =
RowVectorBatch<float>(Extents2D(batch_size, model_dim));
}
inv_timescale = CreateInvTimescale(layer_config.qkv_dim, post_qk);
env = MatMulEnv(pools);
}
};
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_