mirror of https://github.com/google/gemma.cpp.git
439 lines
17 KiB
C++
439 lines
17 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gemma/weights.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <mutex> // NOLINT
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "compression/compress.h"
|
|
#include "compression/types.h"
|
|
#include "gemma/configs.h"
|
|
#include "gemma/model_store.h"
|
|
#include "io/blob_store.h"
|
|
#include "ops/matmul.h" // MMParallel
|
|
#include "util/mat.h"
|
|
#include "util/threading_context.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/highway.h"
|
|
#include "hwy/profiler.h"
|
|
|
|
// TODO: move into foreach_target; this is only used for NUQ Fixup.
|
|
#include "compression/compress-inl.h"
|
|
|
|
namespace gcpp {
|
|
|
|
// Copies att_weights from `attn_vec_einsum_w`.
|
|
void LayerWeightsPtrs::InitAttWeights(std::vector<MatOwner>& mat_owners) {
|
|
// We only use this tensor for Gemma layers.
|
|
if (layer_config.type != LayerAttentionType::kGemma) return;
|
|
|
|
// Files must have one or the other.
|
|
HWY_ASSERT(attn_vec_einsum_w.HasPtr() ^ att_weights.HasPtr());
|
|
// Done if we already read the transposed tensor.
|
|
if (att_weights.HasPtr() && !attn_vec_einsum_w.HasPtr()) return;
|
|
|
|
// NUQ is handled by a specialization in weights.cc.
|
|
HWY_ASSERT(attn_vec_einsum_w.GetType() != Type::kNUQ);
|
|
|
|
const size_t model_dim = layer_config.model_dim;
|
|
const size_t heads = layer_config.heads;
|
|
const size_t qkv_dim = layer_config.qkv_dim;
|
|
|
|
// Reshape [heads, model_dim, qkv_dim] to [model_dim, heads * qkv_dim].
|
|
att_weights.SetType(attn_vec_einsum_w.GetType());
|
|
HWY_ASSERT(att_weights.Rows() == model_dim);
|
|
HWY_ASSERT(att_weights.Cols() == heads * qkv_dim);
|
|
HWY_ASSERT(attn_vec_einsum_w.Rows() == heads * model_dim);
|
|
HWY_ASSERT(attn_vec_einsum_w.Cols() == qkv_dim);
|
|
|
|
{
|
|
static std::mutex m;
|
|
std::lock_guard<std::mutex> lock(m);
|
|
mat_owners.push_back(MatOwner());
|
|
mat_owners.back().AllocateFor(att_weights, MatPadding::kOdd);
|
|
}
|
|
|
|
const size_t T_bytes = att_weights.ElementBytes();
|
|
for (size_t m = 0; m < model_dim; ++m) {
|
|
uint8_t* HWY_RESTRICT out_row = att_weights.RowBytes(m);
|
|
for (size_t h = 0; h < heads; ++h) {
|
|
hwy::CopyBytes(attn_vec_einsum_w.RowBytes(h * model_dim + m),
|
|
out_row + h * qkv_dim * T_bytes, qkv_dim * T_bytes);
|
|
}
|
|
}
|
|
att_weights.SetScale(attn_vec_einsum_w.Scale());
|
|
}
|
|
|
|
// For FFN. Fast, only updates pointers.
|
|
void LayerWeightsPtrs::SplitW1() {
|
|
// Used for Gemma and Griffin layers; FFWVit uses different tensors.
|
|
if (layer_config.type == LayerAttentionType::kVit) return;
|
|
|
|
// Files have both or neither of w1 and w2.
|
|
HWY_ASSERT(gating_einsum_w1.HasPtr() == gating_einsum_w2.HasPtr());
|
|
// w is mutually exclusive with w1 and w2 in the file.
|
|
HWY_ASSERT(gating_einsum_w.HasPtr() ^ gating_einsum_w1.HasPtr());
|
|
// Done if we already read split tensors. Note that they are not
|
|
// necessarily the same type.
|
|
if (gating_einsum_w1.HasPtr() && !gating_einsum_w.HasPtr()) return;
|
|
|
|
const size_t ff_hidden_dim = layer_config.ff_hidden_dim;
|
|
HWY_ASSERT(gating_einsum_w.Rows() == 2 * ff_hidden_dim);
|
|
HWY_ASSERT(gating_einsum_w1.Rows() == ff_hidden_dim);
|
|
HWY_ASSERT(gating_einsum_w2.Rows() == ff_hidden_dim);
|
|
// Cols are the model_dim but we don't have ModelConfig here.
|
|
HWY_ASSERT(gating_einsum_w1.Cols() == gating_einsum_w.Cols());
|
|
HWY_ASSERT(gating_einsum_w2.Cols() == gating_einsum_w.Cols());
|
|
|
|
const size_t stride = gating_einsum_w.Stride();
|
|
gating_einsum_w1.SetPtr(gating_einsum_w.RowBytes(0), stride);
|
|
gating_einsum_w2.SetPtr(gating_einsum_w.RowBytes(ff_hidden_dim), stride);
|
|
gating_einsum_w1.SetType(gating_einsum_w.GetType());
|
|
gating_einsum_w2.SetType(gating_einsum_w.GetType());
|
|
gating_einsum_w1.SetScale(gating_einsum_w.Scale());
|
|
gating_einsum_w2.SetScale(gating_einsum_w.Scale());
|
|
gating_einsum_w.SetPtr(nullptr, gating_einsum_w.Cols());
|
|
}
|
|
|
|
// For attention, which might not have a w2. Fast, only updates pointers.
|
|
void LayerWeightsPtrs::SplitAttW1() {
|
|
// We only use this tensor for Gemma layers.
|
|
if (layer_config.type != LayerAttentionType::kGemma) return;
|
|
|
|
// w is mutually exclusive with w1 in the file.
|
|
HWY_ASSERT(qkv_einsum_w.HasPtr() ^ qkv_einsum_w1.HasPtr());
|
|
// Done if we already read split tensors. Note that w2 does not exist for
|
|
// MHA, and otherwise might not be the same type.
|
|
if (qkv_einsum_w1.HasPtr() && !qkv_einsum_w.HasPtr()) return;
|
|
|
|
const size_t w1_rows = layer_config.heads * layer_config.qkv_dim;
|
|
const size_t w2_rows = layer_config.kv_heads * 2 * layer_config.qkv_dim;
|
|
HWY_ASSERT(qkv_einsum_w.Rows() == w1_rows + w2_rows);
|
|
HWY_ASSERT(qkv_einsum_w1.Rows() == w1_rows);
|
|
HWY_ASSERT(qkv_einsum_w2.Rows() == w2_rows);
|
|
// Cols are the model_dim but we don't have ModelConfig here.
|
|
HWY_ASSERT(qkv_einsum_w1.Cols() == qkv_einsum_w.Cols());
|
|
HWY_ASSERT(qkv_einsum_w2.Cols() == qkv_einsum_w.Cols());
|
|
|
|
const size_t stride = qkv_einsum_w.Stride();
|
|
qkv_einsum_w1.SetPtr(qkv_einsum_w.RowBytes(0), stride);
|
|
qkv_einsum_w2.SetPtr(qkv_einsum_w.RowBytes(w1_rows), stride);
|
|
qkv_einsum_w1.SetType(qkv_einsum_w.GetType());
|
|
qkv_einsum_w2.SetType(qkv_einsum_w.GetType());
|
|
qkv_einsum_w1.SetScale(qkv_einsum_w.Scale());
|
|
qkv_einsum_w2.SetScale(qkv_einsum_w.Scale());
|
|
qkv_einsum_w.SetPtr(nullptr, qkv_einsum_w.Cols());
|
|
}
|
|
|
|
// Must be called after reading weights via `ForEachTensor`.
|
|
// TODO: exporters should bake this into the weights already.
|
|
// WARNING: called from multiple threads; `mat_owners` requires a lock.
|
|
void LayerWeightsPtrs::Fixup(std::vector<MatOwner>& mat_owners) {
|
|
// TODO(janwas): handle NUQ
|
|
InitAttWeights(mat_owners);
|
|
SplitW1();
|
|
SplitAttW1();
|
|
}
|
|
|
|
static void HWY_MAYBE_UNUSED InitAttWeightsNUQ(
|
|
const LayerConfig& layer_config, MatPtrT<NuqStream>& attn_vec_einsum_w,
|
|
MatPtrT<NuqStream>& att_weights, std::vector<MatOwner>& mat_owners) {
|
|
if (!attn_vec_einsum_w.HasPtr()) return;
|
|
HWY_ASSERT(attn_vec_einsum_w.GetType() == Type::kNUQ);
|
|
|
|
HWY_ASSERT(att_weights.HasPtr());
|
|
att_weights.SetType(Type::kNUQ);
|
|
|
|
const size_t model_dim = layer_config.model_dim;
|
|
const size_t heads = layer_config.heads;
|
|
const size_t qkv_dim = layer_config.qkv_dim;
|
|
|
|
// Reshape [kHeads, kModelDim, kQKVDim] to [kModelDim, kHeads * kQKVDim].
|
|
hwy::AlignedFreeUniquePtr<float[]> attn_vec_einsum_w_tmp =
|
|
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
|
|
hwy::AlignedFreeUniquePtr<float[]> att_weights_tmp =
|
|
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
|
|
|
|
const hwy::HWY_NAMESPACE::ScalableTag<float> df;
|
|
HWY_NAMESPACE::DecompressAndZeroPad(df, attn_vec_einsum_w.Span(), 0,
|
|
attn_vec_einsum_w_tmp.get(),
|
|
model_dim * heads * qkv_dim);
|
|
|
|
for (size_t m = 0; m < model_dim; ++m) {
|
|
float* HWY_RESTRICT out_row = att_weights_tmp.get() + m * heads * qkv_dim;
|
|
for (size_t h = 0; h < heads; ++h) {
|
|
hwy::CopyBytes(
|
|
attn_vec_einsum_w_tmp.get() + h * model_dim * qkv_dim + m * qkv_dim,
|
|
out_row + h * qkv_dim, qkv_dim * sizeof(float));
|
|
}
|
|
}
|
|
|
|
CompressWorkingSet work;
|
|
hwy::ThreadPool pool(0);
|
|
HWY_NAMESPACE::Compress(att_weights_tmp.get(), model_dim * heads * qkv_dim,
|
|
work, att_weights.Span(),
|
|
/*packed_ofs=*/0, pool);
|
|
|
|
att_weights.SetScale(attn_vec_einsum_w.Scale());
|
|
}
|
|
|
|
static void HWY_MAYBE_UNUSED SplitW1NUQ(const LayerConfig& layer_config) {
|
|
// TODO(janwas): implement.
|
|
}
|
|
|
|
// Zero-initializes only the allocated tensors in `*this`.
|
|
void ModelWeightsPtrs::ZeroInit() {
|
|
ForEachTensor(nullptr, nullptr, [](const TensorArgs& t) {
|
|
if (!t.mat.HasPtr()) return;
|
|
gcpp::ZeroInit(t.mat);
|
|
});
|
|
}
|
|
|
|
// Copies only the allocated tensors in `*this` from tensors in `other`.
|
|
void ModelWeightsPtrs::CopyFrom(const ModelWeightsPtrs& other) {
|
|
ForEachTensor(const_cast<ModelWeightsPtrs*>(&other), nullptr,
|
|
[](const TensorArgs& t) {
|
|
if (!t.mat.HasPtr()) return;
|
|
HWY_ASSERT(t.other_mat1 && t.other_mat1->HasPtr());
|
|
CopyMat(*t.other_mat1, t.mat);
|
|
});
|
|
}
|
|
|
|
// For reshaping file tensors to the shape expected by the code. This would
|
|
// ideally already happen in the importer. Called by WeightsOwner::Fixup.
|
|
void ModelWeightsPtrs::Fixup(std::vector<MatOwner>& mat_owners,
|
|
hwy::ThreadPool& pool) {
|
|
pool.Run(0, c_layers.size(), [&](uint64_t layer, size_t /*thread*/) {
|
|
GetLayer(layer)->Fixup(mat_owners);
|
|
});
|
|
|
|
pool.Run(0, vit_layers.size(), [&](uint64_t layer, size_t /*thread*/) {
|
|
VitLayer(layer)->Fixup(mat_owners);
|
|
});
|
|
}
|
|
|
|
std::vector<uint32_t> ModelWeightsPtrs::AddTensorDataToWriter(
|
|
BlobWriter& writer) const {
|
|
std::vector<uint32_t> serialized_mat_ptrs;
|
|
// ForEachTensor is non-const but the lambda does not modify *this.
|
|
const_cast<ModelWeightsPtrs*>(this)->ForEachTensor(
|
|
nullptr, nullptr, [&](const TensorArgs& t) {
|
|
if (t.flags & TensorArgs::kMaybeRead && !t.mat.HasPtr()) return;
|
|
HWY_ASSERT_M(t.mat.HasPtr(), t.mat.Name());
|
|
writer.Add(t.mat.Name(), t.mat.Packed(), t.mat.PackedBytes());
|
|
t.mat.AppendTo(serialized_mat_ptrs);
|
|
});
|
|
return serialized_mat_ptrs;
|
|
}
|
|
|
|
struct TensorToRead {
|
|
MatPtr* mat;
|
|
BlobRange range;
|
|
// Some tensors opt out of padding via kPacked flags.
|
|
MatPadding padding;
|
|
};
|
|
|
|
// Allocates multiple in parallel and binds to NUMA nodes.
|
|
static void AllocateAndBindAll(const std::vector<TensorToRead>& tensors,
|
|
std::vector<MatOwner>& owners,
|
|
hwy::ThreadPool& pool) {
|
|
const size_t start = owners.size();
|
|
owners.resize(start + tensors.size());
|
|
|
|
MMParallel parallel(ThreadingContext::Get());
|
|
|
|
// Allocate in parallel because faulting in large tensors is slow.
|
|
pool.Run(0, tensors.size(), [&](uint64_t task, size_t /*thread*/) {
|
|
owners[start + task].AllocateFor(*tensors[task].mat, tensors[task].padding);
|
|
// TODO(janwas): MatMul outputs will later also be BF16.
|
|
BindB(*tensors[task].mat, sizeof(float), parallel);
|
|
});
|
|
}
|
|
|
|
// Parallel I/O into allocated memory, or mapped view of file. The latter is
|
|
// better when the file is huge, but page faults add noise to measurements.
|
|
enum class Mode { kRead, kMap };
|
|
|
|
// Decides whether to read or map based on heuristics and user override.
|
|
static Mode ChooseMode(uint64_t file_bytes, Tristate map) {
|
|
const Allocator& allocator = ThreadingContext::Get().allocator;
|
|
// User has explicitly requested a map or read via args.
|
|
if (map == Tristate::kTrue) return Mode::kMap;
|
|
if (map == Tristate::kFalse) return Mode::kRead;
|
|
// Else: use heuristics to choose. Note that `FreeMiB` is generally low
|
|
// because idle memory is used as cache, so do not use it to decide.
|
|
const size_t file_mib = file_bytes >> 20;
|
|
const size_t total_mib = allocator.TotalMiB();
|
|
if (file_mib > total_mib) {
|
|
HWY_WARN("Weight file %zu MiB > detected memory %zu MiB.",
|
|
static_cast<size_t>(file_mib), total_mib);
|
|
}
|
|
// Large fraction of total.
|
|
if (file_mib >= total_mib / 3) return Mode::kMap;
|
|
// Big enough that even parallel loading wouldn't be quick.
|
|
if (file_mib > 50 * 1024) return Mode::kMap;
|
|
return Mode::kRead;
|
|
}
|
|
|
|
static MapPtr MapFileOrNull(File& file, uint64_t file_bytes) {
|
|
const Allocator& allocator = ThreadingContext::Get().allocator;
|
|
if (file_bytes % allocator.BasePageBytes() == 0) {
|
|
MapPtr mapped = file.Map();
|
|
if (!mapped) {
|
|
HWY_WARN("Failed to map file (%zu KiB), reading instead.",
|
|
static_cast<size_t>(file_bytes >> 10));
|
|
}
|
|
} else {
|
|
HWY_WARN("Unable to map non-padded file (%zu, %zu), reading instead.",
|
|
static_cast<size_t>(file_bytes >> 10), allocator.BasePageBytes());
|
|
}
|
|
return MapPtr();
|
|
}
|
|
|
|
static void MapAll(const std::vector<TensorToRead>& tensors,
|
|
const MapPtr& mapped) {
|
|
PROFILER_ZONE("Startup.Weights.Map");
|
|
for (size_t i = 0; i < tensors.size(); ++i) {
|
|
// SetPtr does not change the stride, but it is expected to be packed
|
|
// because that is what Compress() writes to the file.
|
|
const size_t mat_bytes = tensors[i].mat->PackedBytes();
|
|
// Ensure blob size matches that computed from metadata.
|
|
HWY_ASSERT_M(mat_bytes == tensors[i].range.bytes, tensors[i].mat->Name());
|
|
|
|
tensors[i].mat->SetPtr(
|
|
const_cast<uint8_t*>(mapped.get() + tensors[i].range.offset),
|
|
tensors[i].mat->Stride());
|
|
}
|
|
}
|
|
|
|
static std::vector<IOBatch> MakeBatches(
|
|
const std::vector<TensorToRead>& tensors, const uint64_t file_bytes) {
|
|
PROFILER_ZONE("Startup.Weights.MakeBatches");
|
|
// Batches must be contiguous but blobs are padded, hence at least one
|
|
// batch per tensor, and more when tensor rows exceed the batch size.
|
|
std::vector<IOBatch> batches;
|
|
batches.reserve(tensors.size());
|
|
|
|
for (size_t i = 0; i < tensors.size(); ++i) {
|
|
const BlobRange& range = tensors[i].range;
|
|
MatPtr& mat = *tensors[i].mat;
|
|
uint64_t offset = range.offset;
|
|
HWY_ASSERT(range.End() <= file_bytes);
|
|
|
|
batches.emplace_back(offset, range.key_idx);
|
|
const size_t file_bytes_per_row = mat.Cols() * mat.ElementBytes();
|
|
const size_t mem_stride_bytes = mat.Stride() * mat.ElementBytes();
|
|
uint8_t* row_bytes = mat.RowBytes(0);
|
|
for (size_t r = 0; r < mat.Rows(); ++r) {
|
|
if (!batches.back().Add(row_bytes, file_bytes_per_row)) { // Full batch.
|
|
batches.emplace_back(offset, range.key_idx);
|
|
// Adding to an empty batch is always successful.
|
|
HWY_ASSERT(batches.back().Add(row_bytes, file_bytes_per_row));
|
|
}
|
|
offset += file_bytes_per_row;
|
|
row_bytes += mem_stride_bytes;
|
|
// Keep the in-memory row padding uninitialized so msan detects any use.
|
|
}
|
|
HWY_ASSERT(offset == range.End());
|
|
}
|
|
|
|
HWY_ASSERT(batches.size() >= tensors.size());
|
|
return batches;
|
|
}
|
|
|
|
// Parallel synchronous I/O. Note that O_DIRECT seems undesirable because we
|
|
// want to use the OS cache between consecutive runs.
|
|
static void ReadBatches(const BlobReader& reader,
|
|
const std::vector<IOBatch>& batches,
|
|
hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Startup.Weights.Read");
|
|
// >5x speedup from parallel reads when cached.
|
|
pool.Run(0, batches.size(), [&](uint64_t i, size_t /*thread*/) {
|
|
const IOBatch& batch = batches[i];
|
|
const std::string& key = reader.Keys()[batch.KeyIdx()];
|
|
const uint64_t bytes_read = batch.Read(reader.file());
|
|
if (bytes_read != batch.TotalBytes()) {
|
|
HWY_ABORT("Read failed for %s from %zu, %zu bytes; got %zu.", key.c_str(),
|
|
static_cast<size_t>(batch.Offset()),
|
|
static_cast<size_t>(batch.TotalBytes()),
|
|
static_cast<size_t>(bytes_read));
|
|
}
|
|
});
|
|
}
|
|
|
|
// Aborts on error.
|
|
static void MapOrReadAll(const std::vector<TensorToRead>& tensors,
|
|
BlobReader& reader, Tristate map,
|
|
std::vector<MatOwner>& mat_owners,
|
|
hwy::ThreadPool& pool) {
|
|
if (ChooseMode(reader.file_bytes(), map) == Mode::kMap) {
|
|
MapPtr mapped = MapFileOrNull(reader.file(), reader.file_bytes());
|
|
if (mapped) {
|
|
MapAll(tensors, mapped);
|
|
return;
|
|
}
|
|
} // otherwise fall through to read mode
|
|
|
|
{
|
|
PROFILER_ZONE("Startup.Weights.Allocate");
|
|
// NOTE: this changes the stride of `mats`!
|
|
AllocateAndBindAll(tensors, mat_owners, pool);
|
|
}
|
|
|
|
const std::vector<IOBatch> batches =
|
|
MakeBatches(tensors, reader.file_bytes());
|
|
ReadBatches(reader, batches, pool);
|
|
}
|
|
|
|
void ModelWeightsPtrs::ReadFromBlobs(const ModelStore& model,
|
|
BlobReader& reader, Tristate map,
|
|
std::vector<MatOwner>& mat_owners,
|
|
hwy::ThreadPool& pool) {
|
|
// List of tensors to read/map, and where from.
|
|
std::vector<TensorToRead> tensors;
|
|
|
|
// Enumerate all weights (negligible cost).
|
|
ForEachTensor(nullptr, nullptr, [&](const TensorArgs& t) {
|
|
const MatPadding padding = (t.flags & TensorArgs::kPacked)
|
|
? MatPadding::kPacked
|
|
: MatPadding::kOdd;
|
|
size_t key_idx;
|
|
if (model.FindAndUpdateMatPtr(t.mat, key_idx)) {
|
|
tensors.push_back(
|
|
{.mat = &t.mat, .range = reader.Range(key_idx), .padding = padding});
|
|
return;
|
|
}
|
|
if (t.flags & TensorArgs::kMaybeRead) return; // optional and not found.
|
|
HWY_ABORT("Tensor %s is required but not found in file.", t.mat.Name());
|
|
});
|
|
|
|
MapOrReadAll(tensors, reader, map, mat_owners, pool);
|
|
|
|
{
|
|
PROFILER_ZONE("Startup.Fixup");
|
|
Fixup(mat_owners, pool);
|
|
}
|
|
}
|
|
|
|
} // namespace gcpp
|