mirror of https://github.com/google/gemma.cpp.git
282 lines
9.9 KiB
C++
282 lines
9.9 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "evals/benchmark_helper.h"
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <ostream>
|
|
#include <random>
|
|
#include <string>
|
|
#include <utility> // std::pair
|
|
#include <vector>
|
|
|
|
// Placeholder for internal header, do not modify.
|
|
#include "compression/compress.h" // TypeName
|
|
#include "evals/cross_entropy.h"
|
|
#include "gemma/common.h" // StringFromType
|
|
#include "gemma/gemma.h"
|
|
#include "gemma/kv_cache.h"
|
|
#include "util/app.h"
|
|
#include "util/args.h"
|
|
#include "util/threading.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/highway.h"
|
|
#include "hwy/per_target.h"
|
|
#include "hwy/timer.h"
|
|
|
|
namespace gcpp {
|
|
|
|
void InitGenerator(const InferenceArgs& inference, std::mt19937& gen) {
|
|
if (inference.deterministic) {
|
|
// Nothing up my sleeve number, at least some upper bits set.
|
|
gen.seed(0x12345678);
|
|
} else {
|
|
// Depending on the library implementation, this may still be deterministic.
|
|
std::random_device rd;
|
|
gen.seed(rd());
|
|
}
|
|
}
|
|
|
|
GemmaEnv::GemmaEnv(const LoaderArgs& loader, const InferenceArgs& inference,
|
|
const AppArgs& app)
|
|
: loader_(loader),
|
|
inference_args_(inference),
|
|
app_(app),
|
|
pools_(app_.max_clusters, app_.num_threads) {
|
|
AbortIfInvalidArgs(inference_args_);
|
|
|
|
if (const char* err = loader_.Validate()) {
|
|
loader_.Help();
|
|
fprintf(stderr, "Skipping model load because: %s\n", err);
|
|
} else {
|
|
fprintf(stderr, "Loading model...\n");
|
|
model_ = AllocateGemma(loader_, pools_);
|
|
|
|
// Only allocate one for starters because GenerateBatch might not be called.
|
|
kv_caches_.resize(1);
|
|
kv_caches_[0] =
|
|
KVCache::Create(model_->Info().model, inference.prefill_tbatch_size);
|
|
}
|
|
|
|
InitGenerator(inference_args_, gen_);
|
|
|
|
runtime_config_ = {
|
|
.max_tokens = inference_args_.max_tokens,
|
|
.max_generated_tokens = inference_args_.max_generated_tokens,
|
|
.temperature = inference_args_.temperature,
|
|
.verbosity = app_.verbosity,
|
|
.gen = &gen_,
|
|
};
|
|
}
|
|
|
|
// Internal init must run before the GemmaEnv ctor above, hence it cannot occur
|
|
// in the argv ctor below because its body runs *after* the delegating ctor.
|
|
// This helper function takes care of the init, and could be applied to any of
|
|
// the *Args classes, it does not matter which.
|
|
static AppArgs MakeAppArgs(int argc, char** argv) {
|
|
{ // So that indentation matches expectations.
|
|
// Placeholder for internal init, do not modify.
|
|
}
|
|
return AppArgs(argc, argv);
|
|
}
|
|
|
|
GemmaEnv::GemmaEnv(int argc, char** argv)
|
|
: GemmaEnv(LoaderArgs(argc, argv), InferenceArgs(argc, argv),
|
|
MakeAppArgs(argc, argv)) {}
|
|
|
|
std::pair<std::string, size_t> GemmaEnv::QueryModel(
|
|
const std::vector<int>& tokens) {
|
|
std::string res;
|
|
size_t total_tokens = 0;
|
|
|
|
const double time_start = hwy::platform::Now();
|
|
const BatchStreamFunc batch_stream_token =
|
|
[&res, &total_tokens, &time_start, this](
|
|
size_t query_index, size_t pos, int token, float) {
|
|
++total_tokens;
|
|
res += StringFromTokens(std::vector<int>{token});
|
|
if (app_.verbosity >= 1 && total_tokens % 128 == 0) {
|
|
LogSpeedStats(time_start, total_tokens);
|
|
}
|
|
return true;
|
|
};
|
|
if (app_.verbosity >= 2) {
|
|
std::cout << "Max tokens: " << inference_args_.max_tokens
|
|
<< "\tmax generated tokens: "
|
|
<< inference_args_.max_generated_tokens
|
|
<< "\ttemperature: " << inference_args_.temperature << "\n";
|
|
}
|
|
gcpp::TimingInfo timing_info;
|
|
runtime_config_.batch_stream_token = batch_stream_token;
|
|
model_->Generate(runtime_config_, tokens, /*start_pos=*/0, kv_caches_[0],
|
|
timing_info);
|
|
if (app_.verbosity >= 1) {
|
|
LogSpeedStats(time_start, total_tokens);
|
|
}
|
|
return {res, total_tokens};
|
|
}
|
|
|
|
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
|
|
const MultiplePromptsTokens& prompts) {
|
|
const size_t num_queries = prompts.size();
|
|
HWY_ASSERT(num_queries != 0);
|
|
std::vector<std::pair<std::string, size_t>> res(num_queries);
|
|
std::fill(res.begin(), res.end(), std::make_pair("", 0));
|
|
size_t total_tokens = 0;
|
|
|
|
const double time_start = hwy::platform::Now();
|
|
const BatchStreamFunc batch_stream_token =
|
|
[&res, &total_tokens, &time_start, this](
|
|
size_t query_index, size_t pos, int token, float) {
|
|
std::string token_text;
|
|
HWY_ASSERT(
|
|
model_->Tokenizer().Decode(std::vector<int>{token}, &token_text));
|
|
res[query_index].first.append(token_text);
|
|
res[query_index].second += 1;
|
|
++total_tokens;
|
|
if (app_.verbosity >= 1 && total_tokens % 128 == 0) {
|
|
LogSpeedStats(time_start, total_tokens);
|
|
}
|
|
return true;
|
|
};
|
|
if (app_.verbosity >= 2) {
|
|
fprintf(stderr,
|
|
"Max tok: %zu max gen: %zu temp: %f tbatch: %zu qbatch: %zu\n",
|
|
inference_args_.max_tokens, inference_args_.max_generated_tokens,
|
|
inference_args_.temperature, inference_args_.prefill_tbatch_size,
|
|
inference_args_.decode_qbatch_size);
|
|
}
|
|
|
|
// Ensure we have one KVCache per query.
|
|
if (kv_caches_.size() < num_queries) {
|
|
kv_caches_.resize(num_queries);
|
|
}
|
|
for (size_t i = 1; i < num_queries; ++i) {
|
|
if (kv_caches_[i].seq_len == 0) {
|
|
kv_caches_[i] = KVCache::Create(model_->Info().model,
|
|
inference_args_.prefill_tbatch_size);
|
|
}
|
|
}
|
|
|
|
gcpp::TimingInfo timing_info;
|
|
runtime_config_.batch_stream_token = batch_stream_token;
|
|
inference_args_.CopyTo(runtime_config_);
|
|
model_->GenerateBatch(runtime_config_, prompts, /*start_pos=*/0,
|
|
KVCaches(&kv_caches_[0], num_queries), timing_info);
|
|
if (app_.verbosity >= 1) {
|
|
LogSpeedStats(time_start, total_tokens);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
std::pair<std::string, size_t> GemmaEnv::QueryModel(std::string& input) {
|
|
const std::vector<int> prompt = WrapAndTokenize(model_->Tokenizer(), Info(),
|
|
/*pos=*/0, input);
|
|
return QueryModel(prompt);
|
|
}
|
|
|
|
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel(
|
|
const std::vector<std::string>& inputs) {
|
|
std::vector<std::vector<int>> prompts;
|
|
prompts.reserve(inputs.size());
|
|
for (auto& input : inputs) {
|
|
std::string mutable_prompt = input;
|
|
prompts.push_back(WrapAndTokenize(model_->Tokenizer(), model_->Info(),
|
|
/*pos=*/0, mutable_prompt));
|
|
}
|
|
std::vector<PromptTokens> prompt_vector;
|
|
prompt_vector.reserve(prompts.size());
|
|
for (auto& prompt : prompts) {
|
|
prompt_vector.push_back(PromptTokens(prompt.data(), prompt.size()));
|
|
}
|
|
MultiplePromptsTokens prompt_span(prompt_vector.data(), prompt_vector.size());
|
|
return BatchQueryModel2(prompt_span);
|
|
}
|
|
|
|
float GemmaEnv::CrossEntropy(const std::string& input) {
|
|
std::vector<int> prompt = Tokenize(input);
|
|
prompt.insert(prompt.begin(), BOS_ID);
|
|
return ComputeCrossEntropy(*GetModel(), /*max_tokens=*/3072, prompt,
|
|
MutableKVCache(),
|
|
/*verbosity=*/0) /
|
|
static_cast<int>(input.size());
|
|
}
|
|
|
|
void LogSpeedStats(double time_start, size_t total_tokens) {
|
|
const double time_end = hwy::platform::Now();
|
|
const double time_elapsed = time_end - time_start;
|
|
const double tok_sec = total_tokens / time_elapsed;
|
|
std::cout << total_tokens << " tokens in " << time_elapsed << " seconds"
|
|
<< " [" << tok_sec << " tokens / sec" << "]\n";
|
|
}
|
|
|
|
void ShowConfig(LoaderArgs& loader, InferenceArgs& inference, AppArgs& app,
|
|
PerClusterPools& pools) {
|
|
loader.Print(app.verbosity);
|
|
inference.Print(app.verbosity);
|
|
app.Print(app.verbosity);
|
|
|
|
if (app.verbosity >= 2) {
|
|
time_t now = time(nullptr);
|
|
char* dt = ctime(&now); // NOLINT
|
|
char cpu100[100] = "unknown";
|
|
(void)hwy::platform::GetCpuString(cpu100);
|
|
|
|
fprintf(stderr,
|
|
"Date & Time : %s" // dt includes \n
|
|
"CPU : %s\n"
|
|
"CPU topology : %zux%zu, using %zux%zu\n"
|
|
"Instruction set : %s (%zu bits)\n"
|
|
"Compiled config : %s\n"
|
|
"Weight Type : %s\n"
|
|
"EmbedderInput Type : %s\n",
|
|
dt, cpu100, pools.CoresPerCluster().size(),
|
|
pools.CoresPerCluster()[0].Count(), pools.Outer().NumWorkers(),
|
|
pools.Inner(0).NumWorkers(),
|
|
hwy::TargetName(hwy::DispatchedTarget()), hwy::VectorBytes() * 8,
|
|
CompiledConfig(), StringFromType(loader.Info().weight),
|
|
TypeName(EmbedderInputT()));
|
|
}
|
|
}
|
|
|
|
void ShowHelp(LoaderArgs& loader, InferenceArgs& inference, AppArgs& app) {
|
|
std::cerr
|
|
<< "\n\ngemma.cpp : a lightweight, standalone C++ inference engine\n"
|
|
"==========================================================\n\n"
|
|
"To run gemma.cpp, you need to "
|
|
"specify 3 required model loading arguments:\n"
|
|
" --tokenizer\n"
|
|
" --weights\n"
|
|
" --model.\n";
|
|
std::cerr << "\n*Example Usage*\n\n./gemma --tokenizer tokenizer.spm "
|
|
"--weights 2b-it-sfp.sbs --model 2b-it\n";
|
|
std::cerr << "\n*Model Loading Arguments*\n\n";
|
|
loader.Help();
|
|
std::cerr << "\n*Inference Arguments*\n\n";
|
|
inference.Help();
|
|
std::cerr << "\n*Application Arguments*\n\n";
|
|
app.Help();
|
|
std::cerr << "\n";
|
|
}
|
|
|
|
} // namespace gcpp
|