mirror of https://github.com/google/gemma.cpp.git
566 lines
22 KiB
C++
566 lines
22 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <array>
|
|
#include <complex>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "compression/compress.h"
|
|
#include "compression/shared.h"
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "util/allocator.h"
|
|
#include "hwy/aligned_allocator.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
|
|
namespace gcpp {
|
|
|
|
// Different tensors need to appear in a ForEachTensor, according to what is
|
|
// happening.
|
|
enum class ForEachType {
|
|
// Under normal circumstances, when not initializing or loading, we can
|
|
// include all tensors and ignore the null ones.
|
|
kIgnoreNulls,
|
|
// If there is a table of contents, we can include all tensors.
|
|
kLoadWithToc,
|
|
// There is no table of contents, so we have to be careful to only include
|
|
// tensors that are actually present.
|
|
kLoadNoToc,
|
|
// We need to initialize all tensors needed when there is no table of
|
|
// contents. This differs from kLoadNoToc in that we need to include any
|
|
// tensor that is allocated but not loaded directly from file.
|
|
kInitNoToc,
|
|
};
|
|
|
|
template <class TConfig>
|
|
struct CompressedLayer {
|
|
// Large data is constructed separately.
|
|
CompressedLayer()
|
|
: attn_vec_einsum_w("att_ein", kModelDim, kHeads * kQKVDim),
|
|
qkv_einsum_w("qkv_ein", (kHeads + 2 * kKVHeads) * kQKVDim, kModelDim),
|
|
qkv_einsum_w1("qkv1_w", kHeads * kQKVDim, kModelDim),
|
|
qkv_einsum_w2("qkv2_w", 2 * kKVHeads * kQKVDim, kModelDim),
|
|
attention_output_biases("attn_ob", 1, kAOBiasDim),
|
|
griffin({.linear_x_w = {"gr_lin_x_w", kGriffinDim, kGriffinDim},
|
|
.linear_x_biases = {"gr_lin_x_b", 1, kGriffinDim},
|
|
.linear_y_w = {"gr_lin_y_w", kGriffinDim, kGriffinDim},
|
|
.linear_y_biases = {"gr_lin_y_b", 1, kGriffinDim},
|
|
.linear_out_w = {"gr_lin_out_w", kGriffinDim, kGriffinDim},
|
|
.linear_out_biases = {"gr_lin_out_b", 1, kGriffinDim},
|
|
.conv_w = {"gr_conv_w", kConv1dWidth, kGriffinDim},
|
|
.conv_biases = {"gr_conv_b", 1, kGriffinDim},
|
|
.gate_w = {"gr_gate_w", 2 * kGriffinDim, kGriffinDim / kHeads},
|
|
.gate_biases = {"gr_gate_b", 1, kGriffinDim * 2},
|
|
.a = {"gr_a", 1, kGriffinDim}}),
|
|
// MultiHeadDotProductAttention.
|
|
vit({.attn_out_w = {"attn_out_w", kHeads * kQKVDim, kModelDim},
|
|
.attn_out_b = {"attn_out_b", 1, kModelDim},
|
|
.qkv_einsum_w = {"qkv_ein_w", (kHeads + 2 * kKVHeads) * kQKVDim,
|
|
kModelDim},
|
|
.qkv_einsum_b = {"qkv_ein_b", (kHeads + 2 * kKVHeads), kQKVDim},
|
|
.linear_0_w = {"linear_0_w", kModelDim, kFFHiddenDim},
|
|
.linear_0_b = {"linear_0_b", 1, kFFHiddenDim},
|
|
.linear_1_w = {"linear_1_w", kFFHiddenDim, kModelDim},
|
|
.linear_1_b = {"linear_1_b", 1, kModelDim},
|
|
.layer_norm_0_bias = {"ln_0_bias", 1, kModelDim},
|
|
.layer_norm_0_scale = {"ln_0_scale", 1, kModelDim},
|
|
.layer_norm_1_bias = {"ln_1_bias", 1, kModelDim},
|
|
.layer_norm_1_scale = {"ln_1_scale", 1, kModelDim}}),
|
|
gating_einsum_w("gating_ein", 2 * kFFHiddenDim, kModelDim),
|
|
gating_einsum_w1("gating1_w", kFFHiddenDim, kModelDim),
|
|
gating_einsum_w2("gating2_w", kFFHiddenDim, kModelDim),
|
|
linear_w("linear_w", kModelDim, kFFHiddenDim),
|
|
pre_attention_norm_scale("pre_att_ns", 1, kModelDim),
|
|
pre_ffw_norm_scale("pre_ff_ns", 1, kModelDim),
|
|
post_attention_norm_scale(
|
|
"post_att_ns", 1, kPostNorm == PostNormType::Scale ? kModelDim : 0),
|
|
post_ffw_norm_scale("post_ff_ns", 1,
|
|
kPostNorm == PostNormType::Scale ? kModelDim : 0),
|
|
ffw_gating_biases("ffw_gat_b", 1, kFFBiases ? 2 * kFFHiddenDim : 0),
|
|
ffw_output_biases("ffw_out_b", 1, kFFBiases ? kModelDim : 0),
|
|
att_weights("att_w", kModelDim, kHeads * kQKVDim)
|
|
{}
|
|
~CompressedLayer() = default;
|
|
|
|
using Weight = typename TConfig::Weight;
|
|
// If weights are f32, also f32; otherwise at least bf16. Useful for ops that
|
|
// do not yet support smaller compressed types, or require at least bf16. When
|
|
// weights are f32, we also want such tensors to be f32.
|
|
// If weights are complex, this is also complex.
|
|
using WeightF32OrBF16 =
|
|
hwy::If<hwy::IsSame<Weight, std::complex<double>>(), std::complex<double>,
|
|
hwy::If<hwy::IsSame<Weight, double>(), double,
|
|
hwy::If<IsF32<Weight>(), float, BF16>>>;
|
|
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
static constexpr size_t kKVHeads = TConfig::kKVHeads;
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
static constexpr size_t kAttVecEinsumWSize = kHeads * kQKVDim * kModelDim;
|
|
static constexpr size_t kQKVEinsumWSize =
|
|
(kHeads + 2 * kKVHeads) * kQKVDim * kModelDim;
|
|
static constexpr size_t kQKVEinsumBSize = (kHeads + 2 * kKVHeads) * kQKVDim;
|
|
// 2x for (gelu gating vector, gated vector)
|
|
static constexpr size_t kGatingEinsumWSize = 2 * kFFHiddenDim * kModelDim;
|
|
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
|
|
static constexpr bool kFFBiases = TConfig::kFFBiases;
|
|
static constexpr PostNormType kPostNorm = TConfig::kPostNorm;
|
|
static constexpr size_t kAOBiasDim =
|
|
TConfig::kSoftmaxAttnOutputBiases ? kModelDim : 0;
|
|
static constexpr size_t kGriffinDim =
|
|
TConfig::kGriffinLayers > 0 ? kModelDim : 0;
|
|
|
|
template <class T>
|
|
using ArrayT = MatPtrT<T>;
|
|
|
|
ArrayT<Weight> attn_vec_einsum_w;
|
|
// qkv_einsum_w holds 2 different matrices, which may be separated out.
|
|
// On loading, which is used depends on what is in the file.
|
|
// At inference, the one with a non-null ptr is used.
|
|
ArrayT<Weight> qkv_einsum_w;
|
|
ArrayT<Weight> qkv_einsum_w1;
|
|
ArrayT<Weight> qkv_einsum_w2;
|
|
ArrayT<float> attention_output_biases;
|
|
|
|
struct {
|
|
ArrayT<Weight> linear_x_w;
|
|
ArrayT<float> linear_x_biases;
|
|
ArrayT<Weight> linear_y_w;
|
|
ArrayT<float> linear_y_biases;
|
|
ArrayT<Weight> linear_out_w;
|
|
ArrayT<float> linear_out_biases;
|
|
ArrayT<float> conv_w;
|
|
ArrayT<float> conv_biases;
|
|
ArrayT<Weight> gate_w;
|
|
ArrayT<float> gate_biases;
|
|
ArrayT<float> a;
|
|
} griffin;
|
|
|
|
struct {
|
|
// MultiHeadDotProductAttention.
|
|
ArrayT<WeightF32OrBF16> attn_out_w;
|
|
ArrayT<float> attn_out_b;
|
|
ArrayT<WeightF32OrBF16> qkv_einsum_w;
|
|
ArrayT<float> qkv_einsum_b;
|
|
// MlpBlock.
|
|
ArrayT<WeightF32OrBF16> linear_0_w;
|
|
ArrayT<float> linear_0_b;
|
|
ArrayT<WeightF32OrBF16> linear_1_w;
|
|
ArrayT<float> linear_1_b;
|
|
// LayerNorm.
|
|
ArrayT<WeightF32OrBF16> layer_norm_0_bias;
|
|
ArrayT<WeightF32OrBF16> layer_norm_0_scale;
|
|
ArrayT<WeightF32OrBF16> layer_norm_1_bias;
|
|
ArrayT<WeightF32OrBF16> layer_norm_1_scale;
|
|
} vit;
|
|
|
|
// gating_einsum_w holds 2 different matrices, which may be separated out.
|
|
// On loading, which is used depends on what is in the file.
|
|
// At inference, the one with a non-null ptr is used.
|
|
ArrayT<Weight> gating_einsum_w;
|
|
ArrayT<Weight> gating_einsum_w1;
|
|
ArrayT<Weight> gating_einsum_w2;
|
|
ArrayT<Weight> linear_w;
|
|
// We don't yet have an RMSNorm that accepts all Weight.
|
|
ArrayT<WeightF32OrBF16> pre_attention_norm_scale;
|
|
ArrayT<WeightF32OrBF16> pre_ffw_norm_scale;
|
|
ArrayT<WeightF32OrBF16> post_attention_norm_scale;
|
|
ArrayT<WeightF32OrBF16> post_ffw_norm_scale;
|
|
|
|
ArrayT<float> ffw_gating_biases;
|
|
ArrayT<float> ffw_output_biases;
|
|
|
|
// Reshaped attention; not loaded from disk via ForEachTensor.
|
|
ArrayT<Weight> att_weights;
|
|
|
|
// Initializes att_weights from attn_vec_einsum_w, hence this must be called
|
|
// after loading weights via ForEachTensor.
|
|
// TODO: update compression/convert_weights to bake this in.
|
|
void Reshape(MatStorage& storage) {
|
|
if (attn_vec_einsum_w.data() == nullptr) return;
|
|
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
constexpr size_t kHeads = TConfig::kHeads;
|
|
constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
|
|
// Would have to implement a CompressTraits::Copy for NUQ.
|
|
static_assert(!hwy::IsSame<Weight, NuqStream>());
|
|
|
|
// Reshape [kHeads, kModelDim, kQKVDim] to [kModelDim, kHeads * kQKVDim].
|
|
storage.Allocate();
|
|
att_weights.SetPtr(storage);
|
|
for (size_t m = 0; m < kModelDim; ++m) {
|
|
Weight* HWY_RESTRICT out_row = att_weights.data() + m * kHeads * kQKVDim;
|
|
for (size_t h = 0; h < kHeads; ++h) {
|
|
hwy::CopyBytes(
|
|
attn_vec_einsum_w.data() + h * kModelDim * kQKVDim + m * kQKVDim,
|
|
out_row + h * kQKVDim, kQKVDim * sizeof(Weight));
|
|
}
|
|
}
|
|
att_weights.set_scale(attn_vec_einsum_w.scale());
|
|
}
|
|
|
|
// Used by ForEachTensor for per-layer tensors.
|
|
#define GEMMA_CALL_FUNC(member) \
|
|
{ \
|
|
for (int i = 0; i < ptrs.size(); ++i) { \
|
|
tensors[i] = &ptrs[i]->member; \
|
|
} \
|
|
if (tensors[0]->Ptr() != nullptr || fet != ForEachType::kIgnoreNulls) { \
|
|
func(ptrs[0]->member.CacheName(layer_idx, sep, sep_index).c_str(), \
|
|
hwy::Span<MatPtr*>(tensors, ptrs.size())); \
|
|
} \
|
|
}
|
|
|
|
template <class Func>
|
|
static void ForEachTensor(const std::vector<CompressedLayer<TConfig>*>& ptrs,
|
|
int layer_idx, ForEachType fet, Func func,
|
|
char sep = ' ', int sep_index = -1) {
|
|
MatPtr* tensors[ptrs.size()];
|
|
auto type = TConfig::kLayerConfig[layer_idx];
|
|
if (type == LayerAttentionType::kVit) {
|
|
// MHA.
|
|
GEMMA_CALL_FUNC(vit.attn_out_w);
|
|
GEMMA_CALL_FUNC(vit.attn_out_b);
|
|
GEMMA_CALL_FUNC(vit.qkv_einsum_w);
|
|
GEMMA_CALL_FUNC(vit.qkv_einsum_b);
|
|
// MlpBlock.
|
|
GEMMA_CALL_FUNC(vit.linear_0_w);
|
|
GEMMA_CALL_FUNC(vit.linear_0_b);
|
|
GEMMA_CALL_FUNC(vit.linear_1_w);
|
|
GEMMA_CALL_FUNC(vit.linear_1_b);
|
|
// LayerNorm.
|
|
GEMMA_CALL_FUNC(vit.layer_norm_0_bias);
|
|
GEMMA_CALL_FUNC(vit.layer_norm_0_scale);
|
|
GEMMA_CALL_FUNC(vit.layer_norm_1_bias);
|
|
GEMMA_CALL_FUNC(vit.layer_norm_1_scale);
|
|
return;
|
|
}
|
|
if (type == LayerAttentionType::kGemma) {
|
|
if (fet != ForEachType::kLoadNoToc) {
|
|
GEMMA_CALL_FUNC(att_weights);
|
|
}
|
|
if (fet == ForEachType::kInitNoToc || fet == ForEachType::kLoadNoToc ||
|
|
fet == ForEachType::kIgnoreNulls) {
|
|
GEMMA_CALL_FUNC(attn_vec_einsum_w);
|
|
}
|
|
GEMMA_CALL_FUNC(qkv_einsum_w);
|
|
if (fet == ForEachType::kIgnoreNulls ||
|
|
fet == ForEachType::kLoadWithToc) {
|
|
// The unwanted ones will be null or not in the toc.
|
|
GEMMA_CALL_FUNC(qkv_einsum_w1);
|
|
GEMMA_CALL_FUNC(qkv_einsum_w2);
|
|
}
|
|
} else {
|
|
GEMMA_CALL_FUNC(griffin.linear_x_w);
|
|
GEMMA_CALL_FUNC(griffin.linear_x_biases);
|
|
GEMMA_CALL_FUNC(griffin.linear_y_w);
|
|
GEMMA_CALL_FUNC(griffin.linear_y_biases);
|
|
GEMMA_CALL_FUNC(griffin.linear_out_w);
|
|
GEMMA_CALL_FUNC(griffin.linear_out_biases);
|
|
GEMMA_CALL_FUNC(griffin.conv_w);
|
|
GEMMA_CALL_FUNC(griffin.conv_biases);
|
|
GEMMA_CALL_FUNC(griffin.gate_w);
|
|
GEMMA_CALL_FUNC(griffin.gate_biases);
|
|
GEMMA_CALL_FUNC(griffin.a);
|
|
}
|
|
GEMMA_CALL_FUNC(gating_einsum_w);
|
|
if (fet == ForEachType::kIgnoreNulls || fet == ForEachType::kLoadWithToc) {
|
|
// The unwanted ones will be null or not in the toc.
|
|
GEMMA_CALL_FUNC(gating_einsum_w1);
|
|
GEMMA_CALL_FUNC(gating_einsum_w2);
|
|
}
|
|
GEMMA_CALL_FUNC(linear_w);
|
|
GEMMA_CALL_FUNC(pre_attention_norm_scale);
|
|
GEMMA_CALL_FUNC(pre_ffw_norm_scale);
|
|
|
|
if (TConfig::kPostNorm == PostNormType::Scale) {
|
|
GEMMA_CALL_FUNC(post_attention_norm_scale);
|
|
GEMMA_CALL_FUNC(post_ffw_norm_scale);
|
|
}
|
|
|
|
if (TConfig::kFFBiases) {
|
|
GEMMA_CALL_FUNC(ffw_gating_biases);
|
|
GEMMA_CALL_FUNC(ffw_output_biases);
|
|
}
|
|
|
|
if (TConfig::kSoftmaxAttnOutputBiases &&
|
|
type == LayerAttentionType::kGemma) {
|
|
GEMMA_CALL_FUNC(attention_output_biases);
|
|
}
|
|
}
|
|
|
|
// Sets all the tensors in the layer to zero. Memory must have been allocated.
|
|
void ZeroInit(int layer_idx) {
|
|
ForEachTensor({this}, layer_idx, ForEachType::kIgnoreNulls,
|
|
[](const char*, hwy::Span<MatPtr*> tensors) {
|
|
tensors[0]->ZeroInit();
|
|
});
|
|
}
|
|
|
|
// Allocates memory for all the tensors in the layer.
|
|
// Note that this is slow and only used for a stand-alone layer.
|
|
void Allocate() {
|
|
layer_storage.clear();
|
|
ForEachTensor({this}, /*layer_idx=*/0, ForEachType::kInitNoToc,
|
|
[this](const char* name, hwy::Span<MatPtr*> tensors) {
|
|
this->layer_storage.emplace_back(*tensors[0]);
|
|
layer_storage.back().Allocate();
|
|
tensors[0]->SetPtr(layer_storage.back());
|
|
});
|
|
}
|
|
|
|
// Storage for all the matrices and vectors. Only used for a stand-alone
|
|
// layer. For a model, the CompressedWeights::model_storage is used instead.
|
|
std::vector<MatStorage> layer_storage;
|
|
};
|
|
|
|
template <class TConfig>
|
|
struct CompressedWeights {
|
|
explicit CompressedWeights(hwy::ThreadPool& pool)
|
|
: embedder_input_embedding("c_embedding", TConfig::kVocabSize,
|
|
TConfig::kModelDim),
|
|
final_norm_scale("c_final_norm", 1, TConfig::kModelDim),
|
|
vit_encoder_norm_bias("enc_norm_bias", 1,
|
|
TConfig::VitConfig::kModelDim),
|
|
vit_encoder_norm_scale("enc_norm_scale", 1,
|
|
TConfig::VitConfig::kModelDim),
|
|
vit_img_embedding_bias("img_emb_bias", 1,
|
|
TConfig::VitConfig::kModelDim),
|
|
vit_img_embedding_kernel("img_emb_kernel", 14 * 14 * 3,
|
|
TConfig::VitConfig::kModelDim),
|
|
vit_img_pos_embedding("img_pos_emb", 256,
|
|
TConfig::VitConfig::kModelDim),
|
|
vit_img_head_bias("img_head_bias", 1, TConfig::kModelDim),
|
|
vit_img_head_kernel("img_head_kernel", TConfig::VitConfig::kModelDim,
|
|
TConfig::kModelDim),
|
|
scale_names({"att_ein", "qkv_ein", "gr_lin_x_w", "gr_lin_y_w",
|
|
"gr_lin_out_w", "gr_gate_w", "gating_ein", "linear_w"}) {}
|
|
|
|
~CompressedWeights() = default;
|
|
|
|
using Weight = typename TConfig::Weight;
|
|
using WeightF32OrBF16 = typename CompressedLayer<TConfig>::WeightF32OrBF16;
|
|
using WeightF32OrInputT = hwy::If<hwy::IsSame<WeightF32OrBF16, BF16>(),
|
|
EmbedderInputT, WeightF32OrBF16>;
|
|
|
|
MatPtrT<WeightF32OrInputT> embedder_input_embedding;
|
|
MatPtrT<WeightF32OrBF16> final_norm_scale;
|
|
|
|
// Vit parts.
|
|
MatPtrT<WeightF32OrBF16> vit_encoder_norm_bias;
|
|
MatPtrT<WeightF32OrBF16> vit_encoder_norm_scale;
|
|
MatPtrT<float> vit_img_embedding_bias;
|
|
MatPtrT<WeightF32OrBF16> vit_img_embedding_kernel;
|
|
MatPtrT<float> vit_img_pos_embedding;
|
|
// The head maps from VitConfig::kModelDim (Vit final layer) to
|
|
// kModelDim (LLM input).
|
|
MatPtrT<float> vit_img_head_bias;
|
|
MatPtrT<WeightF32OrBF16> vit_img_head_kernel;
|
|
|
|
// Storage for all the matrices and vectors.
|
|
std::vector<MatStorage> model_storage;
|
|
std::unordered_set<std::string> scale_names;
|
|
|
|
CompressedLayer<TConfig> c_layers[TConfig::kLayers];
|
|
CompressedLayer<typename TConfig::VitConfig>
|
|
vit_layers[TConfig::VitConfig::kLayers];
|
|
|
|
// Called by weights.cc after ForEachTensor.
|
|
void Reshape(hwy::ThreadPool& pool) {
|
|
size_t storage_index = model_storage.size();
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
model_storage.emplace_back(GetLayer(layer)->att_weights);
|
|
}
|
|
pool.Run(0, TConfig::kLayers,
|
|
[this, storage_index](uint64_t layer, size_t /*thread*/) {
|
|
GetLayer(layer)->Reshape(model_storage[storage_index + layer]);
|
|
});
|
|
}
|
|
|
|
void ZeroInit() {
|
|
embedder_input_embedding.ZeroInit();
|
|
final_norm_scale.ZeroInit();
|
|
for (int i = 0; i < TConfig::kLayers; ++i) {
|
|
c_layers[i].ZeroInit(i);
|
|
}
|
|
}
|
|
|
|
const CompressedLayer<TConfig>* GetLayer(size_t layer) const {
|
|
return &c_layers[layer];
|
|
}
|
|
CompressedLayer<TConfig>* GetLayer(size_t layer) { return &c_layers[layer]; }
|
|
const CompressedLayer<typename TConfig::VitConfig>* GetVitLayer(
|
|
size_t layer) const {
|
|
return &vit_layers[layer];
|
|
}
|
|
CompressedLayer<typename TConfig::VitConfig>* GetVitLayer(size_t layer) {
|
|
return &vit_layers[layer];
|
|
}
|
|
|
|
// Copies the data from other to *this.
|
|
void CopyFrom(const CompressedWeights<TConfig>& other) {
|
|
ForEachTensor({this, const_cast<CompressedWeights<TConfig>*>(&other)},
|
|
ForEachType::kIgnoreNulls,
|
|
[](const char*, hwy::Span<MatPtr*> tensors) {
|
|
hwy::CopyBytes(tensors[1]->Ptr(), tensors[0]->Ptr(),
|
|
tensors[1]->SizeBytes());
|
|
});
|
|
}
|
|
|
|
// If scales is empty, computes and returns the scale factors for the tensors,
|
|
// otherwise applies the scale factors to the tensors.
|
|
void GetOrApplyScales(std::vector<float>& scales) {
|
|
int scale_pos = 0;
|
|
ForEachTensor(
|
|
{this}, ForEachType::kIgnoreNulls,
|
|
[&scales, &scale_pos, this](const char*, hwy::Span<MatPtr*> tensors) {
|
|
if (this->scale_names.count(tensors[0]->Name())) {
|
|
if (scale_pos < scales.size()) {
|
|
tensors[0]->set_scale(scales[scale_pos]);
|
|
} else {
|
|
float scale = ScaleWeights(tensors[0]->data<float>(),
|
|
tensors[0]->NumElements());
|
|
scales.push_back(scale);
|
|
}
|
|
++scale_pos;
|
|
}
|
|
});
|
|
HWY_ASSERT(scale_pos == TConfig::kNumTensorScales);
|
|
}
|
|
|
|
template <class Func>
|
|
static void ForEachTensor(
|
|
const std::vector<CompressedWeights<TConfig>*>& ptrs, ForEachType fet,
|
|
Func func) {
|
|
std::vector<CompressedLayer<TConfig>*> layers(ptrs.size());
|
|
std::vector<CompressedLayer<typename TConfig::VitConfig>*> vit_layers(
|
|
ptrs.size());
|
|
MatPtr* tensors[ptrs.size()];
|
|
// Variables used by GEMMA_CALL_FUNC.
|
|
int layer_idx = -1;
|
|
char sep = ' ';
|
|
int sep_index = -1;
|
|
GEMMA_CALL_FUNC(embedder_input_embedding);
|
|
GEMMA_CALL_FUNC(final_norm_scale);
|
|
if constexpr (TConfig::VitConfig::kLayers > 0) {
|
|
// Vit parts.
|
|
GEMMA_CALL_FUNC(vit_encoder_norm_bias);
|
|
GEMMA_CALL_FUNC(vit_encoder_norm_scale);
|
|
GEMMA_CALL_FUNC(vit_img_embedding_bias);
|
|
GEMMA_CALL_FUNC(vit_img_embedding_kernel);
|
|
GEMMA_CALL_FUNC(vit_img_pos_embedding);
|
|
GEMMA_CALL_FUNC(vit_img_head_bias);
|
|
GEMMA_CALL_FUNC(vit_img_head_kernel);
|
|
}
|
|
|
|
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
|
|
for (int i = 0; i < ptrs.size(); ++i) {
|
|
layers[i] = ptrs[i]->GetLayer(layer_idx);
|
|
}
|
|
CompressedLayer<TConfig>::ForEachTensor(layers, layer_idx, fet, func);
|
|
}
|
|
|
|
// Vit layers. Not supported for compress_weights.
|
|
if constexpr (TConfig::VitConfig::kLayers > 0) {
|
|
for (int layer_idx = 0; layer_idx < TConfig::VitConfig::kLayers;
|
|
++layer_idx) {
|
|
auto type = TConfig::VitConfig::kLayerConfig[layer_idx];
|
|
HWY_ASSERT(type == LayerAttentionType::kVit);
|
|
for (int i = 0; i < ptrs.size(); ++i) {
|
|
vit_layers[i] = ptrs[i]->GetVitLayer(layer_idx);
|
|
}
|
|
CompressedLayer<typename TConfig::VitConfig>::ForEachTensor(
|
|
vit_layers, layer_idx, fet, func);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
#undef GEMMA_CALL_FUNC
|
|
|
|
// Pair of configs for the compressed and uncompressed weights.
|
|
template <class CConfig, class UCConfig>
|
|
struct ConfigPair {
|
|
using uc = UCConfig;
|
|
using c = CConfig;
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Interface
|
|
|
|
template <typename TConfig>
|
|
struct AllocateCompressedWeights {
|
|
ByteStorageT operator()(hwy::ThreadPool& pool) const {
|
|
using TWeights = CompressedWeights<TConfig>;
|
|
ByteStorageT weights_u8 = AllocateSizeof<TWeights>();
|
|
TWeights* weights = reinterpret_cast<TWeights*>(weights_u8.get());
|
|
new (weights) TWeights(pool);
|
|
std::vector<MatPtr*> model_toc;
|
|
auto& model_storage = weights->model_storage;
|
|
TWeights::ForEachTensor(
|
|
{weights}, ForEachType::kInitNoToc,
|
|
[&model_toc, &model_storage](const char*, hwy::Span<MatPtr*> tensors) {
|
|
model_toc.push_back(tensors[0]);
|
|
model_storage.emplace_back(*tensors[0]);
|
|
});
|
|
// Allocate in parallel using the pool.
|
|
pool.Run(0, model_storage.size(),
|
|
[&model_toc, &model_storage](uint64_t task, size_t /*thread*/) {
|
|
model_storage[task].Allocate();
|
|
model_toc[task]->SetPtr(model_storage[task]);
|
|
});
|
|
return weights_u8;
|
|
}
|
|
};
|
|
|
|
template <typename TConfig>
|
|
struct ZeroInitCompressedWeights {
|
|
void operator()(ByteStorageT& weights_u8, hwy::ThreadPool& pool) const {
|
|
CompressedWeights<TConfig>& weights =
|
|
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
|
|
weights.ZeroInit();
|
|
}
|
|
};
|
|
|
|
template <typename TConfig>
|
|
struct ReshapeCompressedWeights {
|
|
void operator()(ByteStorageT& weights_u8, hwy::ThreadPool& pool) const {
|
|
CompressedWeights<TConfig>& weights =
|
|
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
|
|
weights.Reshape(pool);
|
|
}
|
|
};
|
|
|
|
// TODO: also add RandInitCompressedWeights
|
|
|
|
ByteStorageT LoadCompressedWeights(const Path& weights, Model model_type,
|
|
Type weight_type, hwy::ThreadPool& pool);
|
|
|
|
void LogWeightStats(Model model, Type weight_type, const ByteStorageT& weights);
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
|