gemma.cpp/util/convert_weights.py

56 lines
2.0 KiB
Python

# WIP - DO NOT MERGE
import torch
from gemma import config
from gemma import model as gemma_model
import numpy as np
def param_names():
"""Return parameter names in the order they are expected for deserialization."""
names = ["embedder.weight", "model.norm.weight"]
# note *weight_scaler params are ignored in the forward computation unless quantization is being used.
# since we are working with the full precision weights as input, don't include these in the parameters being iterated over
layer_params = [
"self_attn.qkv_proj.weight", # attn_vec_einsum_w
"self_attn.o_proj.weight", # qkv_einsum_w
"mlp.gate_proj.weight", # qkv_einsum_w
"mlp.up_proj.weight", # gating_einsum_w
"mlp.down_proj.weight", # linear_w
"input_layernorm.weight", # pre_attention_norm_scale
"post_attention_layernorm.weight", # pre_ffw_norm_scale
]
for layer in range(18):
for layer_param in layer_params:
names = names + ["model.layers." + str(layer) + "." + layer_param]
return names
def convert_weights():
# TODO(austinvhuang): move code in here
pass
if __name__ == "__main__":
# TODO(austinvhuang): parameterize paths
output_file = "2bit-f32.sbs"
model_config = config.get_model_config("2b")
model_config.dtype = "float32"
model_config.quant = "store_true"
model_config.tokenizer = "models/tokenizer.spm"
device = torch.device("cpu")
torch.set_default_dtype(torch.float)
model = gemma_model.GemmaForCausalLM(model_config)
model.load_weights("models/gemma-2b-it.ckpt")
model_dict = dict(model.named_parameters())
param_order = param_names()
print("Writing parameters ...")
with open(output_file, "wb") as bin_handle:
for name in param_order:
arr = model_dict[name].detach().numpy()
# TODO(austinvhuang): reshapes
print(f" {name : <60}{str(arr.shape)}")
arr.flatten().astype(np.float32).tofile(bin_handle)
print("Done")