mirror of https://github.com/google/gemma.cpp.git
282 lines
9.8 KiB
C++
282 lines
9.8 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gemma/weights.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
|
|
#include "compression/compress.h"
|
|
#include "compression/io.h" // Path
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "hwy/base.h" // HWY_ABORT
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/stats.h"
|
|
|
|
namespace gcpp {
|
|
|
|
// Setting this to true disables fread() calls that read the model file.
|
|
constexpr bool kDryRunFread = false;
|
|
|
|
namespace {
|
|
float ScaleWeights(float* data, size_t len) {
|
|
float maxabs = 0.0;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
maxabs = std::max(maxabs, std::abs(data[i]));
|
|
}
|
|
const float kMaxRange = 1.875f;
|
|
if (maxabs <= kMaxRange) {
|
|
return 1.0f;
|
|
}
|
|
const float scale = maxabs / kMaxRange;
|
|
const float inv_scale = 1.0f / scale;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
data[i] *= inv_scale;
|
|
}
|
|
return scale;
|
|
}
|
|
|
|
#define READ_WEIGHTS(name) \
|
|
do { \
|
|
do_fread(&(layer_view->name), layer, #name, sizeof(layer_view->name)); \
|
|
} while (0)
|
|
|
|
#define SCALE_WEIGHTS(name) \
|
|
do { \
|
|
if (ok && !kDryRunFread && scale_for_compression) { \
|
|
weights->scales[scale_pos++] = \
|
|
ScaleWeights(layer_view->name.data(), layer_view->name.size()); \
|
|
} \
|
|
} while (0)
|
|
|
|
template <typename TConfig>
|
|
struct LoadRawWeightsT {
|
|
ByteStorageT operator()(const Path& checkpoint, hwy::ThreadPool& pool,
|
|
bool scale_for_compression) const {
|
|
PROFILER_ZONE("Startup.LoadWeights");
|
|
if (!checkpoint.Exists()) {
|
|
HWY_ABORT("The model weights file '%s' does not exist.",
|
|
checkpoint.path.c_str());
|
|
}
|
|
|
|
ByteStorageT weights_u8 = AllocateWeights<TConfig>()(pool);
|
|
auto* weights = reinterpret_cast<WeightsF<TConfig>*>(weights_u8.get());
|
|
|
|
size_t scale_pos = 0;
|
|
FILE* fptr;
|
|
if constexpr (kDryRunFread) {
|
|
fprintf(stderr, "Dry-Run, not reading model-file.\n");
|
|
} else {
|
|
fptr = fopen(checkpoint.path.c_str(), "rb");
|
|
if (fptr == nullptr) {
|
|
HWY_ABORT("Failed to open model file %s - does it exist?",
|
|
checkpoint.path.c_str());
|
|
}
|
|
}
|
|
bool ok = true;
|
|
uint64_t total_size = 0;
|
|
auto do_fread = [&](void* var, int layer, const char* name, size_t size) {
|
|
if (layer == -1) {
|
|
fprintf(stderr, "Loading Parameters (size %zu): %s\n", size, name);
|
|
} else {
|
|
fprintf(stderr, "Loading Parameters (layer=%d, size %zu): %s\n", layer,
|
|
size, name);
|
|
}
|
|
if constexpr (!kDryRunFread) {
|
|
ok &= 1 == fread(var, size, 1, fptr);
|
|
total_size += size;
|
|
}
|
|
};
|
|
do_fread(&(weights->embedder_input_embedding), -1,
|
|
"embedder_input_embedding",
|
|
sizeof(weights->embedder_input_embedding));
|
|
do_fread(&(weights->final_norm_scale), -1, "final_norm_scale",
|
|
sizeof(weights->final_norm_scale));
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
auto type = TConfig::kLayerConfig[layer];
|
|
LayerF<TConfig>* layer_view = weights->GetLayer(layer);
|
|
|
|
// Make sure we don't have uninitialized memory.
|
|
hwy::ZeroBytes(layer_view, sizeof(*layer_view));
|
|
if (type == LayerAttentionType::kGemma) {
|
|
READ_WEIGHTS(attn_vec_einsum_w);
|
|
READ_WEIGHTS(qkv_einsum_w);
|
|
SCALE_WEIGHTS(attn_vec_einsum_w);
|
|
SCALE_WEIGHTS(qkv_einsum_w);
|
|
} else {
|
|
READ_WEIGHTS(griffin.linear_x_w);
|
|
READ_WEIGHTS(griffin.linear_x_biases);
|
|
READ_WEIGHTS(griffin.linear_y_w);
|
|
READ_WEIGHTS(griffin.linear_y_biases);
|
|
READ_WEIGHTS(griffin.linear_out_w);
|
|
READ_WEIGHTS(griffin.linear_out_biases);
|
|
READ_WEIGHTS(griffin.conv_w);
|
|
READ_WEIGHTS(griffin.conv_biases);
|
|
READ_WEIGHTS(griffin.gate_w);
|
|
READ_WEIGHTS(griffin.gate_biases);
|
|
READ_WEIGHTS(griffin.a);
|
|
SCALE_WEIGHTS(griffin.linear_x_w);
|
|
SCALE_WEIGHTS(griffin.linear_y_w);
|
|
SCALE_WEIGHTS(griffin.linear_out_w);
|
|
SCALE_WEIGHTS(griffin.gate_w);
|
|
}
|
|
READ_WEIGHTS(gating_einsum_w);
|
|
READ_WEIGHTS(linear_w);
|
|
SCALE_WEIGHTS(gating_einsum_w);
|
|
SCALE_WEIGHTS(linear_w);
|
|
READ_WEIGHTS(pre_attention_norm_scale);
|
|
READ_WEIGHTS(pre_ffw_norm_scale);
|
|
if (TConfig::kPostNormScale) {
|
|
READ_WEIGHTS(post_attention_norm_scale);
|
|
READ_WEIGHTS(post_ffw_norm_scale);
|
|
}
|
|
if (TConfig::kFFBiases) {
|
|
READ_WEIGHTS(ffw_gating_biases);
|
|
READ_WEIGHTS(ffw_output_biases);
|
|
}
|
|
if (TConfig::kSoftmaxAttnOutputBiases &&
|
|
type == LayerAttentionType::kGemma) {
|
|
READ_WEIGHTS(attention_output_biases);
|
|
}
|
|
}
|
|
if (!ok) {
|
|
HWY_ABORT(
|
|
"Failed to read from %s - might be a directory, or too small? "
|
|
"expected size: %d kB",
|
|
checkpoint.path.c_str(), static_cast<uint32_t>(total_size >> 10));
|
|
}
|
|
if (!kDryRunFread) {
|
|
HWY_ASSERT(0 == fclose(fptr));
|
|
if (scale_for_compression) {
|
|
HWY_ASSERT(scale_pos == TConfig::kNumTensorScales);
|
|
}
|
|
}
|
|
return weights_u8;
|
|
}
|
|
};
|
|
|
|
#undef READ_WEIGHTS
|
|
#undef SCALE_WEIGHTS
|
|
} // namespace
|
|
|
|
ByteStorageT LoadRawWeights(const Path& weights, Model model,
|
|
hwy::ThreadPool& pool, bool scale_for_compression) {
|
|
return CallFunctorForModel<LoadRawWeightsT>(model, weights, pool,
|
|
scale_for_compression);
|
|
}
|
|
|
|
namespace {
|
|
template <class TConfig>
|
|
struct LoadCompressedWeightsT {
|
|
ByteStorageT operator()(const Path& weights, hwy::ThreadPool& pool) const {
|
|
PROFILER_ZONE("Startup.LoadCompressedWeights");
|
|
if (!weights.Exists()) {
|
|
HWY_ABORT("The model weights file '%s' does not exist.",
|
|
weights.path.c_str());
|
|
}
|
|
|
|
// Allocate compressed weights.
|
|
using CWeights = CompressedWeights<TConfig>;
|
|
ByteStorageT c_weights_u8 = AllocateSizeof<CWeights>();
|
|
CWeights* c_weights = reinterpret_cast<CWeights*>(c_weights_u8.get());
|
|
new (&c_weights->c_layer_ptrs) CompressedLayerPointers<TConfig>(pool);
|
|
|
|
std::array<float, TConfig::kNumTensorScales> scales;
|
|
CacheLoader loader(weights);
|
|
ForEachTensor<TConfig>(nullptr, *c_weights, loader);
|
|
loader.LoadScales(scales.data(), scales.size());
|
|
if (!loader.ReadAll(pool)) {
|
|
HWY_ABORT("Failed to load model weights.");
|
|
}
|
|
if (TConfig::kNumTensorScales > 0) {
|
|
size_t scale_pos = 0;
|
|
for (int layer_idx = 0; layer_idx < TConfig::kLayers; ++layer_idx) {
|
|
auto type = TConfig::kLayerConfig[layer_idx];
|
|
const size_t idx = static_cast<size_t>(layer_idx);
|
|
CompressedLayer<TConfig>* layer_weights = c_weights->GetLayer(idx);
|
|
if (type == LayerAttentionType::kGemma) {
|
|
layer_weights->attn_vec_einsum_w.set_scale(scales[scale_pos++]);
|
|
layer_weights->qkv_einsum_w.set_scale(scales[scale_pos++]);
|
|
} else {
|
|
layer_weights->griffin.linear_x_w.set_scale(scales[scale_pos++]);
|
|
layer_weights->griffin.linear_y_w.set_scale(scales[scale_pos++]);
|
|
layer_weights->griffin.linear_out_w.set_scale(scales[scale_pos++]);
|
|
layer_weights->griffin.gate_w.set_scale(scales[scale_pos++]);
|
|
}
|
|
layer_weights->gating_einsum_w.set_scale(scales[scale_pos++]);
|
|
layer_weights->linear_w.set_scale(scales[scale_pos++]);
|
|
}
|
|
HWY_ASSERT(scale_pos == TConfig::kNumTensorScales);
|
|
}
|
|
return c_weights_u8;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
ByteStorageT LoadCompressedWeights(const Path& weights, Model model,
|
|
hwy::ThreadPool& pool) {
|
|
return CallFunctorForModel<LoadCompressedWeightsT>(model, weights, pool);
|
|
}
|
|
|
|
ByteStorageT LoadWeights(const Path& weights, Model model,
|
|
hwy::ThreadPool& pool) {
|
|
if constexpr (kWeightsAreCompressed) {
|
|
return LoadCompressedWeights(weights, model, pool);
|
|
} else {
|
|
return LoadRawWeights(weights, model, pool,
|
|
/*scale_for_compression=*/false);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
void LogVec(const char* name, const float* data, size_t len) {
|
|
hwy::Stats stats;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
stats.Notify(data[i]);
|
|
}
|
|
printf("%-20s %12zu %13.10f %8.5f %13.10f\n",
|
|
name, len, stats.Min(), stats.Mean(), stats.Max());
|
|
}
|
|
|
|
class WeightLogger {
|
|
public:
|
|
template <size_t N>
|
|
void operator()(const char* name, const std::array<float, N>& tensor) {
|
|
LogVec(name, tensor.data(), N);
|
|
total_weights += N;
|
|
}
|
|
size_t total_weights = 0;
|
|
};
|
|
|
|
template <typename TConfig>
|
|
struct LogWeightStatsT {
|
|
void operator()(const ByteStorageT& weights_u8) const {
|
|
const auto& weights =
|
|
*reinterpret_cast<WeightsF<TConfig>*>(weights_u8.get());
|
|
WeightLogger logger;
|
|
ForEachTensor1<float, TConfig>(logger, weights);
|
|
printf("%-20s %12zu\n", "Total", logger.total_weights);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void LogWeightStats(gcpp::Model model, const ByteStorageT& weights) {
|
|
CallFunctorForModel<LogWeightStatsT>(model, weights);
|
|
}
|
|
|
|
} // namespace gcpp
|