mirror of https://github.com/google/gemma.cpp.git
289 lines
10 KiB
C++
289 lines
10 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_FORWARD_SCALAR_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_FORWARD_SCALAR_H_
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <vector>
|
|
|
|
#include "backprop/prompt.h"
|
|
#include "gemma/activations.h"
|
|
#include "gemma/common.h" // EmbeddingScaling
|
|
#include "gemma/weights.h"
|
|
|
|
namespace gcpp {
|
|
|
|
// w is N x M matrix in row-major order, x is M x K matrix in column-major order
|
|
// y = w * x is N x K matrix in column-major order.
|
|
template<typename T>
|
|
void MatMulT(const T* w, const T* x, T* y, size_t N, size_t M, size_t K) {
|
|
for (size_t i = 0; i < K; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
y[i * N + j] = DotT(&w[j * M], &x[i * M], M);
|
|
}
|
|
}
|
|
}
|
|
|
|
// w is H concatenated N x M matrix in row-major order, x is HM x K matrix in
|
|
// column-major order and y = w' * x is N x K matrix in column-major order,
|
|
// where w' is the rearrangement of w into an N x HM matrix.
|
|
template<typename T>
|
|
void MultiHeadMatMul(const T* w, const T* x, T* y, size_t H, size_t N,
|
|
size_t M, size_t K) {
|
|
memset(y, 0, N * K * sizeof(y[0]));
|
|
for (size_t i = 0; i < K; ++i) {
|
|
for (size_t h = 0; h < H; ++h) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
y[i * N + j] += DotT(&w[h * N * M + j * M], &x[i * H * M + h * M], M);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void RMSNormT(const T* w, const T* x, T* out, size_t N, size_t K) {
|
|
constexpr T eps(1e-6);
|
|
for (size_t i = 0; i < K; ++i) {
|
|
T ss = SquaredL2(x + i * N, N);
|
|
ss = T(1.0) / std::sqrt(ss / T(N) + eps);
|
|
for (size_t j = 0; j < N; j++) {
|
|
out[i * N + j] = (T(1.0) + w[j]) * (ss * x[i * N + j]);
|
|
}
|
|
}
|
|
}
|
|
template<typename T>
|
|
void Softmax(T* x, size_t N) {
|
|
T sum = {};
|
|
auto maxreal = std::real(x[0]);
|
|
for (size_t i = 1; i < N; ++i) {
|
|
if (std::real(x[i]) > maxreal) {
|
|
maxreal = std::real(x[i]);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < N; ++i) {
|
|
x[i] = std::exp(x[i] - maxreal);
|
|
sum += x[i];
|
|
}
|
|
T scale = T(1.0) / sum;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
x[i] *= scale;
|
|
}
|
|
}
|
|
template<typename T>
|
|
void Softmax(T* x, size_t N, size_t K) {
|
|
for (size_t i = 0; i < K; ++i) {
|
|
Softmax(x + i * N, N);
|
|
}
|
|
}
|
|
template<typename T>
|
|
void Softcap(T* x, size_t N) {
|
|
T cap = 30.0;
|
|
T inv_cap = T(1.0) / cap;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
x[i] = cap * std::tanh(x[i] * inv_cap);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void GatedGelu(const T* in, T* out, size_t N, size_t K) {
|
|
for (size_t i = 0; i < K; ++i) {
|
|
const T* x1 = in + i * 2 * N;
|
|
const T* x2 = x1 + N;
|
|
T* y = out + i * N;
|
|
for (size_t j = 0; j < N; ++j) {
|
|
y[j] = x2[j] * Gelu(x1[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void InputEmbedding(const T* w, const std::vector<int>& tokens, T scaling,
|
|
T* y, size_t N) {
|
|
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
|
|
for (size_t i = 0; i < num_tokens; ++i) {
|
|
int token = tokens[i];
|
|
memcpy(y + i * N, w + token * N, N * sizeof(y[0]));
|
|
MulByConstT(scaling, y + i * N, N);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void MaskedAttention(const T* qkv, T* output, size_t num_tokens,
|
|
size_t kHeads, size_t kQKVDim, size_t kSeqLen) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
for (size_t head = 0; head < kHeads; ++head) {
|
|
const size_t qoffset = pos * (kHeads + 2) * kQKVDim;
|
|
const size_t aoffset = pos * kHeads * kSeqLen + head * kSeqLen;
|
|
const T* q = qkv + qoffset + head * kQKVDim;
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
const T* k = qkv + (pos2 * (kHeads + 2) + kHeads) * kQKVDim;
|
|
output[aoffset + pos2] = DotT(q, k, kQKVDim);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
template<typename T>
|
|
void MaskedSoftmax(T* x, size_t num_tokens, size_t kHeads, size_t kSeqLen) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
for (size_t head = 0; head < kHeads; ++head) {
|
|
size_t offset = pos * kHeads * kSeqLen + head * kSeqLen;
|
|
Softmax(x + offset, pos + 1);
|
|
memset(x + offset + pos + 1, 0, (kSeqLen - pos - 1) * sizeof(T));
|
|
}
|
|
}
|
|
}
|
|
template<typename T>
|
|
void MixByAttention(const T* qkv, const T* attention, T* output,
|
|
size_t num_tokens, size_t kHeads, size_t kQKVDim,
|
|
size_t kSeqLen) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
for (size_t head = 0; head < kHeads; ++head) {
|
|
const T* att = &attention[pos * kHeads * kSeqLen + head * kSeqLen];
|
|
T* out = &output[head * kQKVDim + pos * kHeads * kQKVDim];
|
|
memset(out, 0, kQKVDim * sizeof(out[0]));
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
size_t v_offset = (pos2 * (kHeads + 2) + kHeads + 1) * kQKVDim;
|
|
const T* v = &qkv[v_offset];
|
|
MulByConstAndAddT(att[pos2], v, out, kQKVDim);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
template<typename T, typename TConfig>
|
|
void ApplyLayer(const Layer<T, TConfig>& weights,
|
|
ForwardLayer<T, TConfig>& activations,
|
|
size_t num_tokens, T* output) {
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kSeqLen = TConfig::kSeqLen;
|
|
static constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
static const T kQueryScale = T(1.0) / std::sqrt(T(kQKVDim));
|
|
|
|
RMSNormT(weights.pre_attention_norm_scale.data(), activations.input.data(),
|
|
activations.pre_att_rms_out.data(), kModelDim, num_tokens);
|
|
|
|
MatMulT(weights.qkv_einsum_w.data(), activations.pre_att_rms_out.data(),
|
|
activations.qkv.data(), (kHeads + 2) * kQKVDim, kModelDim,
|
|
num_tokens);
|
|
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
T* qkv = activations.qkv.data() + pos * (kHeads + 2) * kQKVDim;
|
|
for (size_t h = 0; h <= kHeads; ++h) {
|
|
Rope(qkv + h * kQKVDim, kQKVDim, pos);
|
|
}
|
|
}
|
|
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
T* qkv = activations.qkv.data() + pos * (kHeads + 2) * kQKVDim;
|
|
MulByConstT(kQueryScale, qkv, kHeads * kQKVDim);
|
|
}
|
|
|
|
MaskedAttention(activations.qkv.data(), activations.att.data(),
|
|
num_tokens, kHeads, kQKVDim, kSeqLen);
|
|
|
|
MaskedSoftmax(activations.att.data(), num_tokens, kHeads, kSeqLen);
|
|
|
|
MixByAttention(activations.qkv.data(), activations.att.data(),
|
|
activations.att_out.data(), num_tokens, kHeads, kQKVDim,
|
|
kSeqLen);
|
|
|
|
MultiHeadMatMul(weights.attn_vec_einsum_w.data(), activations.att_out.data(),
|
|
activations.attention_out.data(), kHeads, kModelDim, kQKVDim,
|
|
num_tokens);
|
|
|
|
AddFromT(activations.input.data(), activations.attention_out.data(),
|
|
num_tokens * kModelDim);
|
|
|
|
RMSNormT(weights.pre_ffw_norm_scale.data(), activations.attention_out.data(),
|
|
activations.bf_pre_ffw_rms_out.data(), kModelDim, num_tokens);
|
|
|
|
MatMulT(weights.gating_einsum_w.data(), activations.bf_pre_ffw_rms_out.data(),
|
|
activations.ffw_hidden.data(), kFFHiddenDim * 2, kModelDim,
|
|
num_tokens);
|
|
|
|
GatedGelu(activations.ffw_hidden.data(), activations.ffw_hidden_gated.data(),
|
|
kFFHiddenDim, num_tokens);
|
|
|
|
MatMulT(weights.linear_w.data(), activations.ffw_hidden_gated.data(),
|
|
output, kModelDim, kFFHiddenDim, num_tokens);
|
|
|
|
AddFromT(activations.attention_out.data(), output, num_tokens * kModelDim);
|
|
}
|
|
|
|
template<typename T>
|
|
T CrossEntropyLoss(const T* x, const Prompt& prompt, size_t V) {
|
|
T loss = {};
|
|
const std::vector<int> tokens = prompt.tokens;
|
|
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
|
|
for (size_t i = 0; i < num_tokens; ++i) {
|
|
if (i + 1 < prompt.context_size) {
|
|
continue; // next token is part of context, don't try to predict it
|
|
}
|
|
const int next_token = tokens[i + 1];
|
|
loss += std::log(x[i * V + next_token]);
|
|
}
|
|
T scaling = -1.0 / std::log(2.0);
|
|
return loss * scaling;
|
|
}
|
|
|
|
template<typename T, typename TConfig>
|
|
T CrossEntropyLossForwardPass(const Prompt& prompt,
|
|
const Weights<T, TConfig>& weights,
|
|
ForwardPass<T, TConfig>& forward) {
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kVocabSize = TConfig::kVocabSize;
|
|
static constexpr size_t kLayers = TConfig::kLayers;
|
|
const std::vector<int> tokens = prompt.tokens;
|
|
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
|
|
|
|
const T kEmbScaling = EmbeddingScaling(kModelDim);
|
|
InputEmbedding(weights.embedder_input_embedding.data(), tokens,
|
|
kEmbScaling, forward.layers[0].input.data(), kModelDim);
|
|
|
|
for (size_t layer = 0; layer < kLayers; ++layer) {
|
|
T* output = layer + 1 < kLayers ?
|
|
forward.layers[layer + 1].input.data() :
|
|
forward.final_layer_output.data();
|
|
ApplyLayer(*weights.GetLayer(layer), forward.layers[layer], num_tokens,
|
|
output);
|
|
}
|
|
|
|
RMSNormT(weights.final_norm_scale.data(),
|
|
forward.final_layer_output.data(),
|
|
forward.final_norm_output.data(), kModelDim, num_tokens);
|
|
|
|
MatMulT(weights.embedder_input_embedding.data(),
|
|
forward.final_norm_output.data(),
|
|
forward.logits.data(), kVocabSize, kModelDim, num_tokens);
|
|
|
|
Softcap(forward.logits.data(), num_tokens * kVocabSize);
|
|
|
|
memcpy(forward.probs.data(), forward.logits.data(),
|
|
num_tokens * kVocabSize * sizeof(forward.logits[0]));
|
|
Softmax(forward.probs.data(), kVocabSize, num_tokens);
|
|
|
|
return CrossEntropyLoss(forward.probs.data(), prompt, kVocabSize);
|
|
}
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_FORWARD_SCALAR_H_
|