gemma.cpp/paligemma/image.cc

244 lines
7.6 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paligemma/image.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "io/io.h"
#include "hwy/aligned_allocator.h" // hwy::Span
#include "hwy/base.h"
#include "hwy/profiler.h"
namespace gcpp {
namespace {
// Hardcoded for PaliGemma ViT input.
constexpr size_t kPatchSize = 14;
// Returns the linearly scaled index in [0, to_size) closest to the
// value in [0, from_size).
int NearestNeighbor(int value, int from_size, int to_size) {
float scale_factor = static_cast<float>(to_size - 1) / (from_size - 1);
// Apply nearest neighbor rounding.
int nn = static_cast<int>(std::round(value * scale_factor));
// Ensure the value is within the new range.
nn = std::clamp(nn, 0, to_size - 1);
return nn;
}
// Returns value in [0,1] mapped linearly to [-1,1].
float StretchToSigned(float value) {
// = out_min + (value - in_min) * (out_max - out_min) / (in_max - in_min);
return value * 2.0f - 1.0f;
}
bool IsLineBreak(int c) { return c == '\r' || c == '\n'; }
const char* CheckP6Format(const char* pos, const char* end) {
constexpr const char format[] = "P6";
for (size_t i = 0; i < sizeof(format) - 1; ++i) {
if (pos == end || *pos != format[i]) {
return nullptr;
}
++pos;
}
return pos;
}
const char* SkipWhitespaceAndComments(const char* pos, const char* end) {
while (pos < end && std::isspace(*pos)) ++pos;
while (pos < end && *pos == '#') { // Skip comment lines.
while (pos < end && !IsLineBreak(*pos)) ++pos;
while (pos < end && std::isspace(*pos)) ++pos;
}
return pos;
}
const char* ParseUnsigned(const char* pos, const char* end, size_t& num) {
if (pos == end || !std::isdigit(*pos)) {
return nullptr;
}
num = 0;
for (; pos < end && std::isdigit(*pos); ++pos) {
num *= 10;
num += *pos - '0';
}
return pos;
}
} // namespace
bool Image::ReadPPM(const std::string& filename) {
Path path(filename);
if (!path.Exists()) {
std::cerr << filename << " does not exist\n";
return false;
}
const std::string content = ReadFileToString(path);
return ReadPPM(hwy::Span<const char>(content.data(), content.size()));
}
bool Image::ReadPPM(const hwy::Span<const char>& buf) {
const char* pos = CheckP6Format(buf.cbegin(), buf.cend());
if (!pos) {
std::cerr << "We only support binary PPM (P6)\n";
return false;
}
size_t width, height, max_value;
pos = SkipWhitespaceAndComments(pos, buf.cend());
pos = ParseUnsigned(pos, buf.cend(), width);
if (!pos) {
std::cerr << "Reached end before width\n";
return false;
}
pos = SkipWhitespaceAndComments(pos, buf.cend());
pos = ParseUnsigned(pos, buf.cend(), height);
if (!pos) {
std::cerr << "Reached end before height\n";
return false;
}
pos = SkipWhitespaceAndComments(pos, buf.cend());
pos = ParseUnsigned(pos, buf.cend(), max_value);
if (!pos) {
std::cerr << "Reached end before max_value\n";
return false;
}
if (max_value <= 0 || max_value > 255) {
std::cerr << "Unsupported max value " << max_value << "\n";
return false;
}
// P6 requires exactly one whitespace character after the header.
if (!std::isspace(*pos)) {
std::cerr << "Missing whitespace after header\n";
return false;
}
++pos;
const size_t data_size = width * height * 3;
if (buf.cend() - pos < static_cast<ptrdiff_t>(data_size)) {
std::cerr << "Insufficient data remaining\n";
return false;
}
data_.resize(data_size);
width_ = width;
height_ = height;
for (size_t i = 0; i < data_size; ++i) {
uint8_t value = pos[i];
data_[i] = StretchToSigned(static_cast<float>(value) / max_value);
}
return true;
}
void Image::Set(int width, int height, const float* data) {
width_ = width;
height_ = height;
int num_elements = width * height * 3;
data_.resize(num_elements);
data_.assign(data, data + num_elements);
float min_value = std::numeric_limits<float>::infinity();
float max_value = -std::numeric_limits<float>::infinity();
for (int i = 0; i < num_elements; ++i) {
if (data_[i] < min_value) min_value = data_[i];
if (data_[i] > max_value) max_value = data_[i];
}
// -> out_min + (value - in_min) * (out_max - out_min) / (in_max - in_min)
float in_range = max_value - min_value;
if (in_range == 0.0f) in_range = 1.0f;
float scale = 2.0f / in_range;
for (int i = 0; i < num_elements; ++i) {
data_[i] = (data_[i] - min_value) * scale - 1.0f;
}
}
void Image::Resize(int new_width, int new_height) {
std::vector<float> new_data(new_width * new_height * 3);
// TODO: go to bilinear interpolation, or antialias.
// E.g. consider WeightsSymmetric3Lowpass and SlowSymmetric3 from
// jpegxl/lib/jxl/convolve_slow.cc
// For now, just do nearest neighbor.
for (int i = 0; i < new_height; ++i) {
for (int j = 0; j < new_width; ++j) {
int old_i = NearestNeighbor(i, new_height, height_);
int old_j = NearestNeighbor(j, new_width, width_);
for (int k = 0; k < 3; ++k) {
new_data[(i * new_width + j) * 3 + k] =
data_[(old_i * width_ + old_j) * 3 + k];
}
}
}
data_ = std::move(new_data);
height_ = new_height;
width_ = new_width;
}
bool Image::WriteBinary(const std::string& filename) const {
// Writes the floating point values as float32 in binary format.
std::ofstream file(filename);
if (!file.is_open()) {
std::cerr << "Failed to open " << filename << "\n";
return false;
}
file.write(reinterpret_cast<const char*>(data_.data()),
data_.size() * sizeof(data_[0]));
file.close();
return true;
}
// Image.data() is H x W x 3.
// We want the N-th patch of size kPatchSize x kPatchSize x 3.
void Image::GetPatch(size_t patch_num, float* patch) const {
PROFILER_FUNC;
constexpr size_t kNumChannels = 3;
constexpr size_t kBytesPerPixel = (kNumChannels * sizeof(float));
constexpr size_t kBytesPerRow = (kPatchSize * kBytesPerPixel);
const size_t kDataSize = width_ * height_ * kNumChannels;
const size_t in_bytes_to_next_row = (width_ * kBytesPerPixel);
HWY_ASSERT(size() == kDataSize);
HWY_ASSERT(width_ % kPatchSize == 0);
HWY_ASSERT(height_ % kPatchSize == 0);
const size_t kNumPatchesPerRow = width_ / kPatchSize;
size_t patch_y = patch_num / kNumPatchesPerRow;
size_t patch_x = patch_num % kNumPatchesPerRow;
HWY_ASSERT(0 <= patch_y && patch_y < height_ / kPatchSize);
HWY_ASSERT(0 <= patch_x && patch_x < kNumPatchesPerRow);
patch_y *= kPatchSize;
patch_x *= kPatchSize;
// Move `out` and `in` to the start of the patch.
char* out = reinterpret_cast<char*>(patch);
const char* in = reinterpret_cast<const char*>(data());
in += (((patch_y * width_) + patch_x) * kBytesPerPixel);
// Copy the patch one row at a time.
for (size_t y = 0; y < kPatchSize; ++y) {
std::memcpy(out, in, kBytesPerRow);
out += kBytesPerRow;
in += in_bytes_to_next_row;
}
}
} // namespace gcpp