gemma.cpp/ops/matmul-inl.h

1422 lines
58 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <vector>
#include "compression/types.h"
#include "ops/matmul.h" // IWYU pragma: export
#include "util/allocator.h"
#include "util/basics.h"
#include "util/mat.h"
#include "util/threading_context.h"
#include "hwy/base.h"
#include "hwy/profiler.h"
#include "hwy/timer.h"
// Include guard for (potentially) SIMD code.
#if defined(THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE) == defined(HWY_TARGET_TOGGLE)
#ifdef THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE
#undef THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE
#else
#define THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE
#endif
#include "hwy/highway.h"
// After highway.h
#include "compression/compress-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
// Like hn::PromoteOddTo, but uses assembly to avoid an extra vector register.
template <class DF, class DBF = hn::Repartition<BF16, DF>>
static hn::VFromD<DF> FastPromoteOddTo(DF df, hn::VFromD<DBF> vbf) {
// Promoting odd means clearing the lower 16 bits. Doing this via AND
// requires a second input vector, which we prefer to avoid due to high
// register pressure. Unfortunately `hn::IfThenElseZero` and
// `IfThenZeroElse` are 'optimized' back to AND, hence resort to assembly.
// Note that SVE also has separate mask registers, but it anyway uses the
// native BF16 dot product code path.
#if HWY_TARGET < HWY_AVX2
const hn::Repartition<uint16_t, decltype(df)> du16;
const auto odd = static_cast<__mmask32>(0xAAAAAAAAu); // 10..10 (32 lanes)
// In-out because this is called after PromoteEvenTo, when we can clobber
// the original bf16 input.
auto u16 = hn::BitCast(du16, vbf).raw;
// Odd u16 lanes are set to the input and even lanes are zero.
asm("vmovdqu16 %[U16], %[U16]%{%[ODD]%}%{z%};"
: [U16] "+v"(u16) // AVX-512 reg
: [ODD] "Yk"(odd)); // mask reg except k0 (not writable)
return hn::BitCast(df, hn::VFromD<decltype(du16)>{u16});
#else
return hn::PromoteOddTo(df, vbf);
#endif
}
// Converts from float intermediate to MatMul output type `TC`.
template <class DC, class DF = hn::Rebind<float, DC>, HWY_IF_F32_D(DC)>
hn::Vec<DC> TCFromF32(DC /*dc*/, hn::Vec<DF> vf) {
return vf;
}
template <class DC, class DF = hn::Rebind<float, DC>, HWY_IF_BF16_D(DC)>
hn::Vec<DC> TCFromF32(DC dc, hn::Vec<DF> vf) {
return hn::DemoteTo(dc, vf);
}
// Tag classes, passed to `MMKernel::A2C0` to choose between writing one
// (all-K) result to C via `MMStoreHorizontalSumsIntoC`, or writing the
// first kc result to partial, or accumulating the next kc result into partial
// via `MMAddHorizontalSumsIntoPartial`.
struct MMSetC {};
struct MMSetPartial {};
struct MMAddPartial {};
// Stores horizontal sums of up to 16 vectors via transpose.
template <size_t kRowsAC, bool kAdd>
class MMStoreHorizontalSumsIntoC {
public:
static_assert(kNR == 4); // for `StoreInterleaved4`
// Computes horizontal sums of `kRowsAC x kNR` vectors and stores into
// `C` starting at `(row_c, col_c)`.
//
// `Crc` are the 16 combinations of an A row vector indexed by `r`, times a
// transposed B row vector indexed by `c`. Their elements are thus a subset
// of the terms of the dot product constituting the final `C[r, c]` result.
// Thus we compute the horizontal sums of each `Crc`. The elements may be
// permuted because we multiply bf16 via `ReorderWidenMulAccumulate`, but
// this does not change their horizontal sum.
template <class DF, class VF = hn::Vec<DF>, typename TC>
HWY_INLINE void operator()(DF df, //
VF C00, VF C01, VF C02, VF C03, //
VF C10, VF C11, VF C12, VF C13, //
VF C20, VF C21, VF C22, VF C23, //
VF C30, VF C31, VF C32, VF C33, //
const size_t row_c, const size_t col_c,
const MMArgs& args, RowPtrs<TC> C_rows) const {
HWY_ALIGN float buf[16 * hn::MaxLanes(df)];
const size_t N = hn::Lanes(df);
// Horizontal reductions (`ReduceSum`) are rather expensive, entailing
// log(N) operations for vectors of length N. Because `kNR` == 4, we
// instead use `StoreInterleaved4` for a vector length-agnostic
// 'transpose': `buf[0, 4 * N)` holds `C00[0], C01[0], C02[0], C03[0],
// C00[1], C01[1], C02[1], C03[1] .. C00[N-1], C01[N-1], C02[N-1],
// C03[N-1]`.
MaybeStoreInterleaved4<0>(df, N, C00, C01, C02, C03, buf);
MaybeStoreInterleaved4<1>(df, N, C10, C11, C12, C13, buf);
MaybeStoreInterleaved4<2>(df, N, C20, C21, C22, C23, buf);
MaybeStoreInterleaved4<3>(df, N, C30, C31, C32, C33, buf);
// Adding N consecutive V4 yields horizontal sums of Cr0, Cr1, Cr2, Cr3 in
// the elements of one V4. We have four independent rows `r`, hence the
// code is effectively unrolled, which increases throughput.
const hn::CappedTag<float, kNR> d4;
using V4 = hn::Vec<decltype(d4)>;
// Store to four elements per row of `partial`.
// No loop is required because vectors are at least 4*32 bits.
V4 sum0 = MaybeLoad<0>(d4, N, buf);
V4 sum1 = MaybeLoad<1>(d4, N, buf);
V4 sum2 = MaybeLoad<2>(d4, N, buf);
V4 sum3 = MaybeLoad<3>(d4, N, buf);
for (size_t lane = 1; lane < N; ++lane) {
sum0 = MaybeAdd<0>(d4, N, sum0, buf + kNR * lane);
sum1 = MaybeAdd<1>(d4, N, sum1, buf + kNR * lane);
sum2 = MaybeAdd<2>(d4, N, sum2, buf + kNR * lane);
sum3 = MaybeAdd<3>(d4, N, sum3, buf + kNR * lane);
}
const V4 vscale = hn::Set(d4, args.scale);
V4 vadd = hn::Zero(d4);
if constexpr (kAdd) {
vadd = hn::Load(d4, args.add + col_c);
}
MaybeScaleAndStore<0>(d4, sum0, vscale, vadd, C_rows, row_c, col_c);
MaybeScaleAndStore<1>(d4, sum1, vscale, vadd, C_rows, row_c, col_c);
MaybeScaleAndStore<2>(d4, sum2, vscale, vadd, C_rows, row_c, col_c);
MaybeScaleAndStore<3>(d4, sum3, vscale, vadd, C_rows, row_c, col_c);
}
private:
// These helper functions hoist if() out of the main code below. They have
// no effect if kRow >= kRowsAC.
template <size_t kRow, class DD, class VD = hn::Vec<DD>>
static HWY_INLINE void MaybeStoreInterleaved4(DD dd, size_t N, VD Cr0, VD Cr1,
VD Cr2, VD Cr3,
float* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
hn::StoreInterleaved4(Cr0, Cr1, Cr2, Cr3, dd, buf + 4 * kRow * N);
}
}
// Note: N is the number of lanes in the StoreInterleaved4 vectors, not V4.
template <size_t kRow, class DF4, class VF4 = hn::Vec<DF4>>
static HWY_INLINE VF4 MaybeLoad(DF4 df4, size_t N,
const float* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
return hn::Load(df4, buf + 4 * kRow * N);
} else {
return hn::Zero(df4);
}
}
template <size_t kRow, class DF4, class VF4 = hn::Vec<DF4>>
static HWY_INLINE VF4 MaybeAdd(DF4 df4, size_t N, VF4 sum,
const float* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
return hn::Add(sum, hn::Load(df4, buf + 4 * kRow * N));
} else {
return sum;
}
}
template <size_t kRow, /*deduced:*/ class DF4, class VF4 = hn::Vec<DF4>,
typename TC>
static HWY_INLINE void MaybeScaleAndStore(DF4 df4, VF4 sum, VF4 vscale,
VF4 vadd, RowPtrs<TC> C_rows,
const size_t row_c,
const size_t col_c) {
if constexpr (kRow < kRowsAC) {
TC* HWY_RESTRICT pos = C_rows[row_c + kRow] + col_c;
const hn::Rebind<TC, DF4> dc4;
const VF4 out = hn::MulAdd(sum, vscale, vadd);
hn::Store(TCFromF32(dc4, out), dc4, pos);
}
}
}; // MMStoreHorizontalSumsIntoC
// Accumulates horizontal sums of up to 16 vectors via transpose.
template <size_t kRowsAC, class Tag>
class MMAddHorizontalSumsIntoPartial {
public:
static_assert(kNR == 4); // for `StoreInterleaved4`
// Computes horizontal sums of `kRowsAC x kNR` vectors and accumulates
// into `partial` starting at `(row_c, col_c)`.
//
// `Crc` are the 16 combinations of an A row vector indexed by `r`, times a
// transposed B row vector indexed by `c`. Their elements are thus a subset
// of the terms of the dot product constituting the final `C[r, c]` result.
// Thus we compute the horizontal sums of each `Crc`. The elements may be
// permuted because we multiply bf16 via `ReorderWidenMulAccumulate`, but
// this does not change their horizontal sum.
template <class DF, class VF = hn::Vec<DF>>
HWY_INLINE void operator()(DF df, //
VF F00, VF F01, VF F02, VF F03, //
VF F10, VF F11, VF F12, VF F13, //
VF F20, VF F21, VF F22, VF F23, //
VF F30, VF F31, VF F32, VF F33, //
const size_t row_c, const size_t col_c,
const StridedViewD& partial) const {
// We accumulate in 64-bit to avoid loss of precision.
static_assert(HWY_HAVE_FLOAT64, "Disable Armv7 NEON: we require fp64");
const hn::Repartition<double, DF> dd;
HWY_ALIGN double buf[16 * hn::MaxLanes(dd)];
using VD = hn::Vec<decltype(dd)>;
const size_t ND = hn::Lanes(dd);
VD C00 = SumOfPromotedPairs(dd, F00);
VD C01 = SumOfPromotedPairs(dd, F01);
VD C02 = SumOfPromotedPairs(dd, F02);
VD C03 = SumOfPromotedPairs(dd, F03);
VD C10 = SumOfPromotedPairs(dd, F10);
VD C11 = SumOfPromotedPairs(dd, F11);
VD C12 = SumOfPromotedPairs(dd, F12);
VD C13 = SumOfPromotedPairs(dd, F13);
VD C20 = SumOfPromotedPairs(dd, F20);
VD C21 = SumOfPromotedPairs(dd, F21);
VD C22 = SumOfPromotedPairs(dd, F22);
VD C23 = SumOfPromotedPairs(dd, F23);
VD C30 = SumOfPromotedPairs(dd, F30);
VD C31 = SumOfPromotedPairs(dd, F31);
VD C32 = SumOfPromotedPairs(dd, F32);
VD C33 = SumOfPromotedPairs(dd, F33);
// Horizontal reductions (`ReduceSum`) are rather expensive, entailing
// log(N) operations for vectors of length N. Because `kNR` == 4, we
// instead use `StoreInterleaved4` for a vector length-agnostic
// 'transpose': `buf[0, 4 * N)` holds `C00[0], C01[0], C02[0], C03[0],
// C00[1], C01[1], C02[1], C03[1] .. C00[N-1], C01[N-1], C02[N-1],
// C03[N-1]`.
MaybeStoreInterleaved4<0>(dd, ND, C00, C01, C02, C03, buf);
MaybeStoreInterleaved4<1>(dd, ND, C10, C11, C12, C13, buf);
MaybeStoreInterleaved4<2>(dd, ND, C20, C21, C22, C23, buf);
MaybeStoreInterleaved4<3>(dd, ND, C30, C31, C32, C33, buf);
// Adding N consecutive V4 yields horizontal sums of Cr0, Cr1, Cr2, Cr3 in
// the elements of one V4. We have four independent rows `r`, hence the
// code is effectively unrolled, which increases throughput.
const hn::CappedTag<double, kNR> d4;
using V4 = hn::Vec<decltype(d4)>;
// Store to four elements per row of `partial`.
// Loop is required because vectors may be smaller than 4*64 bits.
for (size_t c = 0; c < kNR; c += hn::Lanes(d4)) {
V4 sum0 = MaybeLoad<0>(d4, ND, buf + c);
V4 sum1 = MaybeLoad<1>(d4, ND, buf + c);
V4 sum2 = MaybeLoad<2>(d4, ND, buf + c);
V4 sum3 = MaybeLoad<3>(d4, ND, buf + c);
for (size_t lane = 1; lane < ND; ++lane) {
sum0 = MaybeAdd<0>(d4, ND, sum0, buf + c + kNR * lane);
sum1 = MaybeAdd<1>(d4, ND, sum1, buf + c + kNR * lane);
sum2 = MaybeAdd<2>(d4, ND, sum2, buf + c + kNR * lane);
sum3 = MaybeAdd<3>(d4, ND, sum3, buf + c + kNR * lane);
}
MaybeAddStore<0>(d4, sum0, partial, row_c, col_c + c);
MaybeAddStore<1>(d4, sum1, partial, row_c, col_c + c);
MaybeAddStore<2>(d4, sum2, partial, row_c, col_c + c);
MaybeAddStore<3>(d4, sum3, partial, row_c, col_c + c);
}
}
private:
// Converts lanes to double and adds pairs of them to obtain a vector with the
// same horizontal sum, but element type double.
template <class DD, class VD = hn::Vec<DD>,
class DF = hn::Repartition<float, DD>, class VF = hn::Vec<DF>>
static HWY_INLINE VD SumOfPromotedPairs(DD dd, VF f) {
// TODO: SVE could PromoteEvenTo.
const VD d0 = hn::PromoteLowerTo(dd, f);
const VD d1 = hn::PromoteUpperTo(dd, f);
return hn::Add(d0, d1);
}
// These helper functions hoist if() out of the main code below. They have
// no effect if kRow >= kRowsAC.
template <size_t kRow, class DD, class VD = hn::Vec<DD>>
static HWY_INLINE void MaybeStoreInterleaved4(DD dd, size_t N, VD Cr0, VD Cr1,
VD Cr2, VD Cr3,
double* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
hn::StoreInterleaved4(Cr0, Cr1, Cr2, Cr3, dd, buf + 4 * kRow * N);
}
}
// Note: N is the number of lanes in the StoreInterleaved4 vectors, not V4.
template <size_t kRow, class D4, class V4 = hn::Vec<D4>>
static HWY_INLINE V4 MaybeLoad(D4 d4, size_t N,
const double* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
return hn::Load(d4, buf + 4 * kRow * N);
} else {
return hn::Zero(d4);
}
}
template <size_t kRow, class D4, class V4 = hn::Vec<D4>>
static HWY_INLINE V4 MaybeAdd(D4 d4, size_t N, V4 sum,
const double* HWY_RESTRICT buf) {
if constexpr (kRow < kRowsAC) {
return hn::Add(sum, hn::Load(d4, buf + 4 * kRow * N));
} else {
return sum;
}
}
template <size_t kRow, class D4, class V4 = hn::Vec<D4>>
static HWY_INLINE void MaybeAddStore(D4 d4, V4 sum,
const StridedViewD& partial,
const size_t row_c, const size_t col_c) {
if constexpr (kRow < kRowsAC) {
double* HWY_RESTRICT pos = partial.Row(row_c + kRow) + col_c;
if constexpr (hwy::IsSame<Tag, MMSetPartial>()) {
hn::Store(sum, d4, pos);
} else {
static_assert(hwy::IsSame<Tag, MMAddPartial>());
const V4 prev = hn::Load(d4, pos);
hn::Store(hn::Add(sum, prev), d4, pos);
}
}
}
}; // MMAddHorizontalSumsIntoPartial
// Stateless, wraps member functions.
class MMKernel {
public:
// Calls `LoopKC` for each of `mc` rows of A in steps of `mr`. `A_view`
// is `mc x kc` and `B_view` is `(kNR x kc)`. Both start at row/col 0.
// A2C0 in MOMMS terminology updates a `mc x kNR` slice of the output.
template <class Tag, typename TC>
static HWY_INLINE void A2C0(const StridedViewBF& A_view,
const StridedViewBF& B_view, size_t mr,
const IndexRange& range_mc, const size_t row_b,
size_t kc, Tag tag, const MMArgs& args,
RowPtrs<TC> C_rows) {
HWY_DASSERT(1 <= mr && mr <= kMaxMR);
const size_t row0 = range_mc.begin();
const size_t mc = range_mc.Num();
size_t imc = 0;
// M == 1, or x86 with 8 SIMD registers:
if (HWY_UNLIKELY(mr == 1)) {
for (; imc < mc; ++imc) {
LoopKC<1>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args,
C_rows);
}
return;
}
// AVX2 (16 registers)
if (HWY_UNLIKELY(mr == 2)) {
if (HWY_LIKELY(mc >= 2)) {
for (; imc <= mc - 2; imc += 2) {
LoopKC<2>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args,
C_rows);
}
}
if (HWY_UNLIKELY(imc != mc)) {
LoopKC<1>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args,
C_rows);
}
return;
}
HWY_DASSERT(mr == 4);
if (HWY_LIKELY(mc >= 4)) {
for (; imc <= mc - 4; imc += 4) {
LoopKC<4>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args,
C_rows);
}
}
const size_t remainder_mc = mc - imc;
HWY_DASSERT(remainder_mc < 4);
if (HWY_UNLIKELY(remainder_mc & 2)) {
LoopKC<2>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args, C_rows);
imc += 2;
}
if (HWY_UNLIKELY(remainder_mc & 1)) {
LoopKC<1>(A_view, B_view, row0 + imc, imc, row_b, kc, tag, args, C_rows);
imc += 1;
}
HWY_DASSERT(imc == mc);
}
private:
// Element-wise multiplies a vector from one row of A with `kNR` vectors,
// each from a row of transposed B, and adds them to `kNR` fp32 `Cc`
// vectors. The lanes of `Cc` are thus a subset of the terms of the dot
// product which is the MatMul result at column `c`.
//
// Why elementwise, when most MatMul instead broadcast one element from A and
// multiply with one element from kr columns in B to obtain kr columns of C?
// We double the compute throughput on NEON_BF16/SVE/AVX3_ZEN4 by using the
// bf16 * bf16 + f32 `ReorderWidenMulAccumulate`. However, this involves
// pairwise adds, whereas the kr-column approach requires that lanes remain
// separate. Our elementwise approach is fine with pairwise adds because they
// do not change the horizontal sum. However, horizontal sums can be costly,
// so we introduce a fast and new(?) vector-length agnostic 'transpose', see
// `MMAddHorizontalSumsIntoPartial`.
template <class DBF, class VBF = hn::Vec<DBF>,
class DF = hn::Repartition<float, DBF>, class VF = hn::Vec<DF>>
static HWY_INLINE void ElementwiseMulAcc(DBF dbf, VBF a, VBF b0, VBF b1,
VBF b2, VBF b3, VF& C0, VF& C1,
VF& C2, VF& C3) {
// This handles a single row of A, so the horizontal sums of `C0..3` are the
// (partial) dot products for 4 consecutive values in one row of C.
static_assert(kNR == 4);
HWY_DASSERT(HWY_NATIVE_DOT_BF16);
const DF df;
VF unused_sum1 = hn::Zero(df);
// When implemented natively, this op includes 'free' f32 accumulation.
C0 = hn::ReorderWidenMulAccumulate(df, a, b0, C0, unused_sum1);
C1 = hn::ReorderWidenMulAccumulate(df, a, b1, C1, unused_sum1);
C2 = hn::ReorderWidenMulAccumulate(df, a, b2, C2, unused_sum1);
C3 = hn::ReorderWidenMulAccumulate(df, a, b3, C3, unused_sum1);
// Ensure unused_sum1 was indeed unused.
HWY_DASSERT(hn::AllTrue(df, hn::Eq(unused_sum1, hn::Zero(df))));
}
// Like `ElementwiseMulAcc`, but splits BF16 inputs into odd and even f32
// for use with FMA. Also handles two rows at a time to hide the FMA latency
// (we assume 4 cycles and dual-issue) before writing `C00` again.
template <class DBF, class VBF = hn::Vec<DBF>,
class DF = hn::Repartition<float, DBF>, class VF = hn::Vec<DF>>
static HWY_INLINE void ElementwiseMulAcc2(DBF dbf, VBF a0, VBF a1, VF b0o,
VF b0e, VF b1o, VF b1e, VF b2o,
VF b2e, VF b3o, VF b3e, VF& C00,
VF& C01, VF& C02, VF& C03, VF& C10,
VF& C11, VF& C12, VF& C13) {
const DF df;
HWY_DASSERT(!HWY_NATIVE_DOT_BF16);
// Avoid `ReorderWidenMulAccumulate` because it requires extra adds for
// the two outputs, and `WidenMulPairwiseAdd` because it wastes an
// opportunity for a free f32 add via FMA, and `MulOddAdd` because we want
// to avoid an extra register for a constant. Use scoping to reduce register
// pressure and avoid spills on 32-register targets. Register usage:
// 4 for a0, a1, a0e, a1e; 8 for `b*`, 16 for `C*` = 28.
{
const VF a0e = hn::PromoteEvenTo(df, a0);
C00 = hn::MulAdd(a0e, b0e, C00);
C01 = hn::MulAdd(a0e, b1e, C01);
C02 = hn::MulAdd(a0e, b2e, C02);
C03 = hn::MulAdd(a0e, b3e, C03);
}
{
const VF a1e = hn::PromoteEvenTo(df, a1);
C10 = hn::MulAdd(a1e, b0e, C10);
C11 = hn::MulAdd(a1e, b1e, C11);
C12 = hn::MulAdd(a1e, b2e, C12);
C13 = hn::MulAdd(a1e, b3e, C13);
}
{
const VF a0o = FastPromoteOddTo(df, a0);
C00 = hn::MulAdd(a0o, b0o, C00);
C01 = hn::MulAdd(a0o, b1o, C01);
C02 = hn::MulAdd(a0o, b2o, C02);
C03 = hn::MulAdd(a0o, b3o, C03);
}
{
const VF a1o = FastPromoteOddTo(df, a1);
C10 = hn::MulAdd(a1o, b0o, C10);
C11 = hn::MulAdd(a1o, b1o, C11);
C12 = hn::MulAdd(a1o, b2o, C12);
C13 = hn::MulAdd(a1o, b3o, C13);
}
}
// Innermost loop over `kc` columns (typically 1024-4096) in steps of one
// vector, for `kRowsAC` rows of `A_view` from range_mc-relative `imc` and
// `B_view` from row 0 (both at column 0). Updates a `kRowsAC x kNR` tile
// with top-left corner `partial.Row(row_ac) + col_c`. Both A and B must be
// BF16 so we can load directly without `Decompress2`, which is expensive for
// NUQ and requires 2x unrolling, which requires more loads.
template <size_t kRowsAC, /*deduced:*/ class Tag, typename TC>
static HWY_INLINE void LoopKC(const StridedViewBF& A_view,
const StridedViewBF& B_view, size_t row_ac,
size_t imc, size_t col_c, size_t kc, Tag tag,
const MMArgs& args, RowPtrs<TC> C_rows) {
const hn::ScalableTag<BF16> dbf;
using VBF = hn::Vec<decltype(dbf)>;
const size_t NBF = hn::Lanes(dbf);
HWY_DASSERT(kRowsAC <= kMaxMR);
HWY_DASSERT(col_c % kNR == 0);
// Rows are aligned to `kMaxMR`, except for the last tile of A.
// `kRowsAC` rows of A (null for the rest) and `kNR` rows of B.
static_assert(kNR == 4);
const BF16* HWY_RESTRICT ar0 = A_view.Row(imc + 0);
const BF16* HWY_RESTRICT ar1 = kRowsAC > 1 ? A_view.Row(imc + 1) : nullptr;
const BF16* HWY_RESTRICT ar2 = kRowsAC > 2 ? A_view.Row(imc + 2) : nullptr;
const BF16* HWY_RESTRICT ar3 = kRowsAC > 3 ? A_view.Row(imc + 3) : nullptr;
const BF16* HWY_RESTRICT br0 = B_view.Row(0);
const BF16* HWY_RESTRICT br1 = B_view.Row(1);
const BF16* HWY_RESTRICT br2 = B_view.Row(2);
const BF16* HWY_RESTRICT br3 = B_view.Row(3);
// Ensure `A` and `B` were zero-padded by `DecompressAndZeroPad`.
if constexpr (HWY_IS_DEBUG_BUILD) {
for (size_t i = kc; i < hwy::RoundUpTo(kc, NBF); ++i) {
{
HWY_DASSERT(hwy::ConvertScalarTo<float>(ar0[i]) == 0.0f);
}
if constexpr (kRowsAC > 1) {
HWY_DASSERT(hwy::ConvertScalarTo<float>(ar1[i]) == 0.0f);
}
if constexpr (kRowsAC > 2) {
HWY_DASSERT(hwy::ConvertScalarTo<float>(ar2[i]) == 0.0f);
}
if constexpr (kRowsAC > 3) {
HWY_DASSERT(hwy::ConvertScalarTo<float>(ar3[i]) == 0.0f);
}
HWY_DASSERT(hwy::ConvertScalarTo<float>(br0[i]) == 0.0f);
HWY_DASSERT(hwy::ConvertScalarTo<float>(br1[i]) == 0.0f);
HWY_DASSERT(hwy::ConvertScalarTo<float>(br2[i]) == 0.0f);
HWY_DASSERT(hwy::ConvertScalarTo<float>(br3[i]) == 0.0f);
}
}
// Accumulate into f32.
const hn::Repartition<float, decltype(dbf)> df;
using VF = hn::Vec<decltype(df)>;
VF C00 = hn::Zero(df), C01 = hn::Zero(df), C02 = hn::Zero(df),
C03 = hn::Zero(df), C10 = hn::Zero(df), C11 = hn::Zero(df),
C12 = hn::Zero(df), C13 = hn::Zero(df), C20 = hn::Zero(df),
C21 = hn::Zero(df), C22 = hn::Zero(df), C23 = hn::Zero(df),
C30 = hn::Zero(df), C31 = hn::Zero(df), C32 = hn::Zero(df),
C33 = hn::Zero(df);
HWY_UNROLL(1)
for (size_t ikc = 0; ikc < kc; ikc += NBF) {
if constexpr (HWY_NATIVE_DOT_BF16) {
const VBF b0 = hn::Load(dbf, br0 + ikc);
const VBF b1 = hn::Load(dbf, br1 + ikc);
const VBF b2 = hn::Load(dbf, br2 + ikc);
const VBF b3 = hn::Load(dbf, br3 + ikc);
{
const VBF a0 = hn::Load(dbf, ar0 + ikc);
ElementwiseMulAcc(dbf, a0, b0, b1, b2, b3, C00, C01, C02, C03);
}
if constexpr (kRowsAC > 1) {
const VBF a1 = hn::Load(dbf, ar1 + ikc);
ElementwiseMulAcc(dbf, a1, b0, b1, b2, b3, C10, C11, C12, C13);
}
if constexpr (kRowsAC > 2) {
const VBF a2 = hn::Load(dbf, ar2 + ikc);
ElementwiseMulAcc(dbf, a2, b0, b1, b2, b3, C20, C21, C22, C23);
}
if constexpr (kRowsAC > 3) {
const VBF a3 = hn::Load(dbf, ar3 + ikc);
ElementwiseMulAcc(dbf, a3, b0, b1, b2, b3, C30, C31, C32, C33);
}
} else {
VF b0e, b1e, b2e, b3e, b0o, b1o, b2o, b3o;
{
const VBF b0 = hn::Load(dbf, br0 + ikc);
const VBF b1 = hn::Load(dbf, br1 + ikc);
const VBF b2 = hn::Load(dbf, br2 + ikc);
const VBF b3 = hn::Load(dbf, br3 + ikc);
b0e = hn::PromoteEvenTo(df, b0);
b1e = hn::PromoteEvenTo(df, b1);
b2e = hn::PromoteEvenTo(df, b2);
b3e = hn::PromoteEvenTo(df, b3);
b0o = FastPromoteOddTo(df, b0);
b1o = FastPromoteOddTo(df, b1);
b2o = FastPromoteOddTo(df, b2);
b3o = FastPromoteOddTo(df, b3);
}
{
const VBF a0 = hn::Load(dbf, ar0 + ikc);
const VBF a1 = kRowsAC > 1 ? hn::Load(dbf, ar1 + ikc) : a0;
ElementwiseMulAcc2(dbf, a0, a1, b0o, b0e, b1o, b1e, b2o, b2e, b3o,
b3e, C00, C01, C02, C03, C10, C11, C12, C13);
}
if constexpr (kRowsAC > 2) {
const VBF a2 = hn::Load(dbf, ar2 + ikc);
const VBF a3 = kRowsAC > 3 ? hn::Load(dbf, ar3 + ikc) : a2;
ElementwiseMulAcc2(dbf, a2, a3, b0o, b0e, b1o, b1e, b2o, b2e, b3o,
b3e, C20, C21, C22, C23, C30, C31, C32, C33);
}
}
}
// This is a substantial fraction (about 1/3) of the total time, but is
// called frequently, so do not add a profiler zone.
if constexpr (hwy::IsSame<Tag, MMSetC>()) {
if (args.add) {
MMStoreHorizontalSumsIntoC<kRowsAC, /*kAdd=*/true>()(
df, C00, C01, C02, C03, C10, C11, C12, C13, C20, C21, C22, C23, C30,
C31, C32, C33, row_ac, col_c, args, C_rows);
} else {
MMStoreHorizontalSumsIntoC<kRowsAC, /*kAdd=*/false>()(
df, C00, C01, C02, C03, C10, C11, C12, C13, C20, C21, C22, C23, C30,
C31, C32, C33, row_ac, col_c, args, C_rows);
}
} else {
MMAddHorizontalSumsIntoPartial<kRowsAC, Tag>()(
df, C00, C01, C02, C03, C10, C11, C12, C13, C20, C21, C22, C23, C30,
C31, C32, C33, row_ac, col_c, args.partial);
}
}
};
// Multiply partial by scale, add bias if present, demote and store to f32 `C`.
// Stateless, wraps member functions.
class MMScaleDemoteAdd {
public:
// Fills the `range_mc/range_nc` region of `outputs.C` by multiplying the
// same region of `outputs.partial` by `outputs.scale`, which is the product
// of the scales of A and B, demoting from f64 to f32, then if `outputs.add`
// is nonzero, adding it to each row.
// TODO: fuse with subsequent operations - function pointer?
// Although this region in `outputs.C` is not touched again, streaming stores
// do not help on SKX and Zen4. TODO: re-check this.
template <typename TC>
static HWY_INLINE void FillC(const IndexRange& range_mc,
const IndexRange& range_nc, const MMArgs& args,
RowPtrs<TC> C_rows) {
size_t row_c = range_mc.begin();
if (args.add) {
constexpr bool kAdd = true;
if (range_mc.Num() >= 4) {
for (; row_c <= range_mc.end() - 4; row_c += 4) {
Do4Rows<kAdd>(row_c, range_nc, args, C_rows);
}
}
for (; row_c < range_mc.end(); ++row_c) {
Do1Row<kAdd>(row_c, range_nc, args, C_rows);
}
} else {
constexpr bool kAdd = false;
if (range_mc.Num() >= 4) {
for (; row_c <= range_mc.end() - 4; row_c += 4) {
Do4Rows<kAdd>(row_c, range_nc, args, C_rows);
}
}
for (; row_c < range_mc.end(); ++row_c) {
Do1Row<kAdd>(row_c, range_nc, args, C_rows);
}
}
}
private:
// Unrolled for 4 rows to reduce the number of loads from `add`.
template <bool kAdd, typename TC>
static HWY_INLINE void Do4Rows(size_t row_c, const IndexRange& range_nc,
const MMArgs& args, RowPtrs<TC> C_rows) {
const hn::ScalableTag<double> dd;
const hn::Rebind<float, decltype(dd)> df; // result of DemoteTo
const hn::Rebind<TC, decltype(dd)> dc;
using VD = hn::Vec<decltype(dd)>;
using VF = hn::Vec<decltype(df)>;
const size_t ND = hn::Lanes(dd);
const VD vscale = hn::Set(dd, args.scale);
const double* HWY_RESTRICT pr0 = args.partial.Row(row_c + 0);
const double* HWY_RESTRICT pr1 = args.partial.Row(row_c + 1);
const double* HWY_RESTRICT pr2 = args.partial.Row(row_c + 2);
const double* HWY_RESTRICT pr3 = args.partial.Row(row_c + 3);
TC* HWY_RESTRICT cr0 = C_rows[row_c + 0];
TC* HWY_RESTRICT cr1 = C_rows[row_c + 1];
TC* HWY_RESTRICT cr2 = C_rows[row_c + 2];
TC* HWY_RESTRICT cr3 = C_rows[row_c + 3];
// We manually unroll 2x for higher IPC in batch=1.
size_t col_c = range_nc.begin();
if (HWY_LIKELY(range_nc.Num() >= 2 * ND)) {
for (; col_c <= range_nc.end() - 2 * ND; col_c += 2 * ND) {
VD a0, a1; // unused if !kAdd
if constexpr (kAdd) {
// Promoting to double lets us fuse the Add into MulAdd.
a0 = hn::PromoteTo(dd, hn::Load(df, args.add + col_c));
a1 = hn::PromoteTo(dd, hn::Load(df, args.add + col_c + ND));
}
const VD d00 = hn::Load(dd, pr0 + col_c);
const VD d01 = hn::Load(dd, pr0 + col_c + ND);
const VD d10 = hn::Load(dd, pr1 + col_c);
const VD d11 = hn::Load(dd, pr1 + col_c + ND);
const VD d20 = hn::Load(dd, pr2 + col_c);
const VD d21 = hn::Load(dd, pr2 + col_c + ND);
const VD d30 = hn::Load(dd, pr3 + col_c);
const VD d31 = hn::Load(dd, pr3 + col_c + ND);
VD m00, m01, m10, m11, m20, m21, m30, m31;
if constexpr (kAdd) {
m00 = hn::MulAdd(d00, vscale, a0);
m01 = hn::MulAdd(d01, vscale, a1);
m10 = hn::MulAdd(d10, vscale, a0);
m11 = hn::MulAdd(d11, vscale, a1);
m20 = hn::MulAdd(d20, vscale, a0);
m21 = hn::MulAdd(d21, vscale, a1);
m30 = hn::MulAdd(d30, vscale, a0);
m31 = hn::MulAdd(d31, vscale, a1);
} else {
m00 = hn::Mul(d00, vscale);
m01 = hn::Mul(d01, vscale);
m10 = hn::Mul(d10, vscale);
m11 = hn::Mul(d11, vscale);
m20 = hn::Mul(d20, vscale);
m21 = hn::Mul(d21, vscale);
m30 = hn::Mul(d30, vscale);
m31 = hn::Mul(d31, vscale);
}
// First convert f64 to f32.
const VF f00 = hn::DemoteTo(df, m00);
const VF f01 = hn::DemoteTo(df, m01);
const VF f10 = hn::DemoteTo(df, m10);
const VF f11 = hn::DemoteTo(df, m11);
const VF f20 = hn::DemoteTo(df, m20);
const VF f21 = hn::DemoteTo(df, m21);
const VF f30 = hn::DemoteTo(df, m30);
const VF f31 = hn::DemoteTo(df, m31);
// Note that Stream is neutral on SKX and harmful on Zen4.
hn::Store(TCFromF32(dc, f00), dc, cr0 + col_c);
hn::Store(TCFromF32(dc, f01), dc, cr0 + col_c + ND);
hn::Store(TCFromF32(dc, f10), dc, cr1 + col_c);
hn::Store(TCFromF32(dc, f11), dc, cr1 + col_c + ND);
hn::Store(TCFromF32(dc, f20), dc, cr2 + col_c);
hn::Store(TCFromF32(dc, f21), dc, cr2 + col_c + ND);
hn::Store(TCFromF32(dc, f30), dc, cr3 + col_c);
hn::Store(TCFromF32(dc, f31), dc, cr3 + col_c + ND);
}
}
for (; col_c < range_nc.end(); col_c += ND) {
const size_t remaining = range_nc.end() - col_c;
HWY_DASSERT(remaining < 2 * ND);
VD a0; // unused if !kAdd
if constexpr (kAdd) {
// Promoting to double lets us fuse the Add into MulAdd.
a0 = hn::PromoteTo(dd, hn::LoadN(df, args.add + col_c, remaining));
}
const VD d00 = hn::LoadN(dd, pr0 + col_c, remaining);
const VD d10 = hn::LoadN(dd, pr1 + col_c, remaining);
const VD d20 = hn::LoadN(dd, pr2 + col_c, remaining);
const VD d30 = hn::LoadN(dd, pr3 + col_c, remaining);
VD m00, m10, m20, m30;
if constexpr (kAdd) {
m00 = hn::MulAdd(d00, vscale, a0);
m10 = hn::MulAdd(d10, vscale, a0);
m20 = hn::MulAdd(d20, vscale, a0);
m30 = hn::MulAdd(d30, vscale, a0);
} else {
m00 = hn::Mul(d00, vscale);
m10 = hn::Mul(d10, vscale);
m20 = hn::Mul(d20, vscale);
m30 = hn::Mul(d30, vscale);
}
// First convert f64 to f32.
const VF f00 = hn::DemoteTo(df, m00);
const VF f10 = hn::DemoteTo(df, m10);
const VF f20 = hn::DemoteTo(df, m20);
const VF f30 = hn::DemoteTo(df, m30);
hn::StoreN(TCFromF32(dc, f00), dc, cr0 + col_c, remaining);
hn::StoreN(TCFromF32(dc, f10), dc, cr1 + col_c, remaining);
hn::StoreN(TCFromF32(dc, f20), dc, cr2 + col_c, remaining);
hn::StoreN(TCFromF32(dc, f30), dc, cr3 + col_c, remaining);
}
}
// Same as above but handles a single row (for remainder rows).
template <bool kAdd, typename TC>
static HWY_INLINE void Do1Row(size_t row_c, const IndexRange& range_nc,
const MMArgs& args, RowPtrs<TC> C_rows) {
const hn::ScalableTag<double> dd;
const hn::Rebind<float, decltype(dd)> df; // result of DemoteTo
const hn::Rebind<TC, decltype(dd)> dc;
using VD = hn::Vec<decltype(dd)>;
using VF = hn::Vec<decltype(df)>;
const size_t ND = hn::Lanes(dd);
const VD vscale = hn::Set(dd, args.scale);
const double* HWY_RESTRICT pr0 = args.partial.Row(row_c + 0);
TC* HWY_RESTRICT cr0 = C_rows[row_c + 0];
// We manually unroll 2x for higher IPC in batch=1.
size_t col_c = range_nc.begin();
if (HWY_LIKELY(range_nc.Num() >= 2 * ND)) {
for (; col_c <= range_nc.end() - 2 * ND; col_c += 2 * ND) {
VD a0, a1; // unused if !kAdd
if constexpr (kAdd) {
// Promoting to double lets us fuse the Add into MulAdd.
a0 = hn::PromoteTo(dd, hn::Load(df, args.add + col_c));
a1 = hn::PromoteTo(dd, hn::Load(df, args.add + col_c + ND));
}
const VD d00 = hn::Load(dd, pr0 + col_c);
const VD d01 = hn::Load(dd, pr0 + col_c + ND);
VD m00, m01;
if constexpr (kAdd) {
m00 = hn::MulAdd(d00, vscale, a0);
m01 = hn::MulAdd(d01, vscale, a1);
} else {
m00 = hn::Mul(d00, vscale);
m01 = hn::Mul(d01, vscale);
}
// First convert f64 to f32.
const VF f00 = hn::DemoteTo(df, m00);
const VF f01 = hn::DemoteTo(df, m01);
// Note that Stream is neutral on SKX and harmful on Zen4.
hn::Store(TCFromF32(dc, f00), dc, cr0 + col_c);
hn::Store(TCFromF32(dc, f01), dc, cr0 + col_c + ND);
}
}
for (; col_c < range_nc.end(); col_c += ND) {
const size_t remaining = range_nc.end() - col_c;
HWY_DASSERT(remaining < 2 * ND);
VD a0; // unused if !kAdd
if constexpr (kAdd) {
// Promoting to double lets us fuse the Add into MulAdd.
a0 = hn::PromoteTo(dd, hn::LoadN(df, args.add + col_c, remaining));
}
const VD d00 = hn::LoadN(dd, pr0 + col_c, remaining);
VD m00;
if constexpr (kAdd) {
m00 = hn::MulAdd(d00, vscale, a0);
} else {
m00 = hn::Mul(d00, vscale);
}
// First convert f64 to f32.
const VF f00 = hn::DemoteTo(df, m00);
hn::StoreN(TCFromF32(dc, f00), dc, cr0 + col_c, remaining);
}
}
}; // MMScaleDemoteAdd
// Called on the main thread with the entire N range, or by each package with
// a static partition of N. This class contains several variants of the
// outer M/N/K loops, and calls `A2C0` which loops over the inner KC and MC.
// Its member variables avoid long argument lists in Do*().
class MMPerPackage {
public:
template <typename TA>
MMPerPackage(const MatPtrT<TA>& A, const MMArgs& args, const MMConfig& config,
size_t pkg_idx, const IndexRange& range_np)
: args_(args),
pkg_idx_(pkg_idx),
// May be overwritten with a view of A, if already BF16.
A_(args_.env->storage.A(pkg_idx, A.Extents())),
range_np_(range_np),
mr_(config.MR()),
ranges_mc_(config.RangesOfMC(A.Rows())),
ranges_kc_(config.RangesOfKC(A.Cols())),
ranges_nc_(config.RangesOfNC(range_np)),
order_(config.Order()),
inner_tasks_(config.InnerTasks()),
out_(config.Out()),
line_bytes_(args.env->ctx.allocator.LineBytes()) {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.DecompressA");
MMZone zone;
zone.MaybeEnter(pkg_idx, zone_id, args_);
A_ = DecompressA(A);
}
// B is decompressed several call layers lower, but not all member functions
// depend on TB, so pass it as an argument instead of templating the class.
template <typename TB, typename TC>
HWY_NOINLINE void operator()(const MatPtrT<TB>& B, RowPtrs<TC> C_rows) const {
switch (order_) {
case MMOrder::kNT:
return DoNT(B, C_rows);
case MMOrder::kNT_K:
return DoNT_K(B, C_rows);
case MMOrder::kNT_MT:
return DoNT_MT(B, C_rows);
case MMOrder::kNT_MT_K:
return DoNT_MT_K(B, C_rows);
default:
HWY_UNREACHABLE;
}
}
private:
// Compute size of per-worker storage for `kNR` row ranges of B. Stack
// allocation avoids passing a worker index.
static constexpr size_t B_stride_max_ =
MMStorage::kMaxKC + 2 * Allocator::MaxLineBytes() / sizeof(BF16);
static constexpr size_t B_storage_max_ = kNR * B_stride_max_;
// Granularity of `ForNP`. B rows produce C columns, so we
// want a multiple of the line size to prevent false sharing.
size_t MultipleNP(size_t sizeof_TC) const {
return HWY_MAX(kNR, line_bytes_ / sizeof_TC);
}
// Single M and K ranges, parallel N. Fills all of C directly.
template <typename TB, typename TC>
HWY_INLINE void DoNT(const MatPtrT<TB>& B, RowPtrs<TC> C_rows) const {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT");
HWY_DASSERT(ranges_mc_.NumTasks() == 1);
HWY_DASSERT(ranges_kc_.NumTasks() == 1);
const IndexRange& range_M = ranges_mc_.Range(0);
const IndexRange& range_K = ranges_kc_.Range(0);
const size_t K = range_K.Num();
const StridedViewBF& A_view = A_.View(range_M.begin(), 0, K);
const size_t B_stride =
Stride(MatPadding::kOdd, K, sizeof(BF16), line_bytes_);
// Similar to `loop_nc` below, but here we hoisted `A_view`.
args_.env->parallel.ForNP(
range_np_, MultipleNP(sizeof(TC)), inner_tasks_, pkg_idx_,
[&](const IndexRange& range_nc, size_t worker) HWY_ATTR {
MMZone zone;
zone.MaybeEnter(worker, zone_id, args_);
HWY_ALIGN BF16 B_storage[B_storage_max_]; // TLS
const StridedViewBF B_storage_view(B_storage, K, B_stride);
for (size_t row_b = range_nc.begin(); row_b < range_nc.end();
row_b += kNR) {
StridedViewBF B_view =
DecompressB(B, row_b, range_K, B_storage_view);
MMKernel::A2C0(A_view, B_view, mr_, range_M, row_b, K, MMSetC(),
args_, C_rows);
}
});
HWY_DASSERT(out_ == MMOut::kDirect); // already filled C
}
// Single M range, parallel N, sequential K. Fills all of partial.
template <typename TB, typename TC>
HWY_INLINE void DoNT_K(const MatPtrT<TB>& B, RowPtrs<TC> C_rows) const {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT_K");
HWY_DASSERT(ranges_mc_.NumTasks() == 1);
const IndexRange& range_mc = ranges_mc_.Range(0);
// Loop over NC/MC/KC, called from the outer loops over K/N.
// C++14 generic lambda enables hoisting branches via template
// argument, while also capturing to avoid long argument lists.
const auto loop_nc = [&](BF16* B_storage, const IndexRange& range_kc,
const IndexRange& range_nc,
auto out_tag) HWY_ATTR {
const size_t kc = range_kc.Num();
const StridedViewBF& A_view =
A_.View(range_mc.begin(), range_kc.begin(), kc);
const StridedViewBF B_storage_view(
B_storage, kc,
Stride(MatPadding::kOdd, kc, sizeof(BF16), line_bytes_));
for (size_t row_b = range_nc.begin(); row_b < range_nc.end();
row_b += kNR) {
StridedViewBF B_view = DecompressB(B, row_b, range_kc, B_storage_view);
MMKernel::A2C0(A_view, B_view, mr_, range_mc, row_b, kc, out_tag, args_,
C_rows);
}
};
args_.env->parallel.ForNP(
range_np_, MultipleNP(sizeof(TC)), inner_tasks_, pkg_idx_,
[&](const IndexRange& range_nc, size_t worker) HWY_ATTR {
MMZone zone;
zone.MaybeEnter(worker, zone_id, args_);
HWY_ALIGN BF16 B_storage[B_storage_max_]; // TLS
// Peel off the first iteration of the kc loop: avoid
// zero-initializing `partial` by writing into it.
ranges_kc_.VisitFirst([&](const IndexRange& range_kc) {
loop_nc(B_storage, range_kc, range_nc, MMSetPartial());
});
ranges_kc_.VisitRemaining([&](const IndexRange& range_kc) {
loop_nc(B_storage, range_kc, range_nc, MMAddPartial());
});
});
if (out_ == MMOut::kCopy) {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT_K.FillC.Copy");
MMZone fill_zone;
fill_zone.MaybeEnter(0, zone_id, args_);
MMScaleDemoteAdd::FillC(range_mc, range_np_, args_, C_rows);
} else if (out_ == MMOut::kParM) {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT_K.FillC.ParM");
args_.env->parallel.ForRangeMC(
range_mc, pkg_idx_, [&](size_t row_a, size_t worker) HWY_ATTR {
MMZone fill_zone;
fill_zone.MaybeEnter(worker, zone_id, args_);
MMScaleDemoteAdd::FillC(IndexRange(row_a, row_a + 1), range_np_,
args_, C_rows);
});
} else {
HWY_UNREACHABLE; // kDirect is only used with kNT.
}
}
// Parallel loops over mc/nc blocks of M/range_np, single K.
// Fills `mc x nc` sections of C directly, in parallel.
template <typename TB, typename TC>
HWY_INLINE void DoNT_MT(const MatPtrT<TB>& B, RowPtrs<TC> C_rows) const {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT_MT");
HWY_DASSERT(ranges_kc_.NumTasks() == 1);
const IndexRange& range_K = ranges_kc_.Range(0);
const size_t K = range_K.Num();
const size_t B_stride =
Stride(MatPadding::kOdd, K, sizeof(BF16), line_bytes_);
// Sequential loop over NC/MC/KC, similar to `loop_nc` below
// except for the profiler strings and `out_tag`.
args_.env->parallel.ForRangesMC_NC(
ranges_mc_, ranges_nc_, pkg_idx_,
[&](const IndexRange& range_mc, const IndexRange& range_nc,
size_t worker) HWY_ATTR {
MMZone zone;
zone.MaybeEnter(worker, zone_id, args_);
const StridedViewBF& A_view = A_.View(range_mc.begin(), 0, K);
HWY_ALIGN BF16 B_storage[B_storage_max_]; // TLS
const StridedViewBF B_storage_view(B_storage, K, B_stride);
for (size_t row_b = range_nc.begin(); row_b < range_nc.end();
row_b += kNR) {
StridedViewBF B_view =
DecompressB(B, row_b, range_K, B_storage_view);
MMKernel::A2C0(A_view, B_view, mr_, range_mc, row_b, K, MMSetC(),
args_, C_rows);
}
});
HWY_DASSERT(out_ == MMOut::kDirect); // already filled C
}
// Parallel loops over mc/nc blocks of M/range_np, sequential K.
// Fills `mc x nc` sections of `partial`, then `C`, in parallel.
template <typename TB, typename TC>
HWY_INLINE void DoNT_MT_K(const MatPtrT<TB>& B, RowPtrs<TC> C_rows) const {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.NT_MT_K");
static const uint32_t fill_zone_id = PROFILER_ADD_ZONE("MM.NT_MT_K.FillC");
const size_t kc_max = ranges_kc_.TaskSize();
HWY_DASSERT(kc_max <= MMStorage::kMaxKC);
const size_t B_stride =
Stride(MatPadding::kOdd, kc_max, sizeof(BF16), line_bytes_);
// Sequential loop over NC/MC/KC, for when the M/N loops are
// already parallel. This is B3A2C0 in MOMMS terminology: we read
// `mc x kc` of A, `nc x kc` of B, update `mc x nc` of `partial`.
const auto loop_nc = [&](const StridedViewBF& B_storage_view,
const IndexRange& range_mc,
const IndexRange& range_kc,
const IndexRange& range_nc,
auto out_tag) HWY_ATTR {
const size_t kc = range_kc.Num();
const StridedViewBF& A_view =
A_.View(range_mc.begin(), range_kc.begin(), kc);
for (size_t row_b = range_nc.begin(); row_b < range_nc.end();
row_b += kNR) {
StridedViewBF B_view = DecompressB(B, row_b, range_kc, B_storage_view);
MMKernel::A2C0(A_view, B_view, mr_, range_mc, row_b, kc, out_tag, args_,
C_rows);
}
}; // loop_nc
args_.env->parallel.ForRangesMC_NC(
ranges_mc_, ranges_nc_, pkg_idx_,
[&](const IndexRange& range_mc, const IndexRange& range_nc,
size_t worker) HWY_ATTR {
MMZone zone;
zone.MaybeEnter(worker, zone_id, args_);
HWY_ALIGN BF16 B_storage[B_storage_max_]; // TLS
const StridedViewBF B_storage_view(B_storage, kc_max, B_stride);
// Peel off the first iteration of the kc loop: avoid
// zero-initializing `partial` by writing into it.
ranges_kc_.VisitFirst([&](const IndexRange& range_kc) {
loop_nc(B_storage_view, range_mc, range_kc, range_nc,
MMSetPartial());
});
ranges_kc_.VisitRemaining([&](const IndexRange& range_kc) {
loop_nc(B_storage_view, range_mc, range_kc, range_nc,
MMAddPartial());
});
// Already in parallel section, hence no `kParM`, and
// `kDirect` is only used with `kNT_MT`.
HWY_DASSERT(out_ == MMOut::kCopy);
MMZone fill_zone;
fill_zone.MaybeEnter(worker, fill_zone_id, args_);
MMScaleDemoteAdd::FillC(range_mc, range_nc, args_, C_rows);
});
}
// Decompresses all `M x K` from `A` into padded BF16 `A_`. Assumes `TA` is a
// seekable type (i.e., not NUQ) so we can use pointer arithmetic.
template <typename TA>
HWY_NOINLINE void DoDecompressA(const MatPtrT<TA>& A, MMParA par_a) const {
const IndexRange all_M(0, A.Rows());
const IndexRange all_K(0, A.Cols());
HWY_DASSERT(all_K.Num() == A_.Cols());
const hn::ScalableTag<BF16> dbf;
const size_t NBF = hn::Lanes(dbf);
static_assert(hwy::IsSameEither<TA, BF16, float>(), "Can seek");
const auto do_range = [&](const IndexRange& range_M,
const IndexRange& range_K) HWY_ATTR {
const size_t col0 = range_K.begin();
const size_t cols = range_K.Num();
// Must be a vector multiple, or the last range before row padding,
// otherwise `DecompressAndZeroPad` overwrites neighbors.
HWY_DASSERT(cols % NBF == 0 || range_K.end() == A.Cols());
for (size_t row_a : range_M) {
const PackedSpan<const TA> from = MakeSpan(A.Row(row_a) + col0, cols);
BF16* HWY_RESTRICT to = A_.Row(row_a) + col0;
DecompressAndZeroPad(dbf, from, 0, to, cols);
// Verify that we zero-padded.
if constexpr (HWY_IS_DEBUG_BUILD) {
for (size_t i = cols; i < hwy::RoundUpTo(cols, NBF); ++i) {
HWY_DASSERT(hwy::ConvertScalarTo<float>(to[i]) == 0.0f);
}
}
}
};
switch (par_a) {
case MMParA::kNone:
do_range(all_M, all_K);
break;
case MMParA::kK1:
case MMParA::kK2:
case MMParA::kK4: {
const size_t inner_tasks = static_cast<size_t>(par_a);
// At least one vector, otherwise DecompressAndZeroPad will add
// padding, which might overwrite neighboring tasks. Also a whole cache
// line to avoid false sharing.
const size_t multiple_K = HWY_MAX(NBF, line_bytes_ / sizeof(BF16));
args_.env->parallel.ForNP(
all_K, multiple_K, inner_tasks, pkg_idx_,
[&](const IndexRange& range_K, size_t /*worker*/) {
do_range(all_M, range_K);
});
break;
}
case MMParA::kM:
args_.env->parallel.ForRangeMC(
all_M, pkg_idx_, [&](size_t row_a, size_t /*worker*/) {
do_range(IndexRange(row_a, row_a + 1), all_K);
});
break;
}
}
// Autotuning wrapper for `DoDecompressA`.
template <typename TA>
HWY_INLINE StridedViewBF DecompressA(const MatPtrT<TA>& A) const {
MMAutoTune<MMParA>& autotune = args_.per_key->autotune_par_a[pkg_idx_];
// If already BF16, maybe return a view:
if constexpr (hwy::IsSame<TA, BF16>()) {
// Only if vector multiple and padded (see `DoDecompressA`).
const size_t NBF = hn::Lanes(hn::ScalableTag<BF16>());
if (HWY_LIKELY(A.Cols() % NBF == 0 && !A.IsPacked())) {
// Const, but cast because StridedView is also used for `partial` which
// is non-const.
return StridedViewBF(const_cast<TA*>(A.Row(0)), A.Cols(), A.Stride());
}
}
if (HWY_LIKELY(autotune.Best())) {
DoDecompressA(A, *autotune.Best());
return A_;
}
// First call: generate candidates.
if (HWY_UNLIKELY(!autotune.HasCandidates())) {
std::vector<MMParA> candidates = {MMParA::kK1, MMParA::kK2, MMParA::kK4};
if (A.Rows() == 1) {
candidates.push_back(MMParA::kNone);
} else {
candidates.push_back(MMParA::kM);
}
autotune.SetCandidates(candidates);
}
const MMParA& par_a = autotune.NextConfig();
const uint64_t t0 = hwy::timer::Start();
DoDecompressA(A, par_a);
const uint64_t t1 =
args_.env->have_timer_stop ? hwy::timer::Stop() : hwy::timer::Start();
const uint64_t min_elapsed = autotune.NotifyTicks(t1 - t0);
if (HWY_UNLIKELY(args_.env->print_measurement && autotune.ShouldPrint())) {
fprintf(stderr, "%s,%7.3f\n", StringFromParA(par_a),
static_cast<double>(min_elapsed) /
hwy::platform::InvariantTicksPerSecond() * 1E6);
}
return A_;
}
// Decompresses `kNR x kc` from `B[row_b, range_kc.begin()]` to row 0,
// col 0 of `B_view`. Decompressing SFP is relatively cheap on `AVX3_DL`
// thanks to its large table lookups, and less so on other targets.
template <typename TB>
HWY_INLINE StridedViewBF DecompressB(const MatPtrT<TB>& B, const size_t row_b,
const IndexRange& range_kc,
const StridedViewBF& B_view) const {
if constexpr (hwy::IsSame<TB, BF16>()) {
return StridedViewBF(const_cast<BF16*>(B.Row(row_b)) + range_kc.begin(),
range_kc.Num(), B.Stride());
}
const hn::ScalableTag<BF16> dbf;
const PackedSpan<const TB> B_span = B.PaddedSpan();
const size_t kc = range_kc.Num();
const size_t col0 = range_kc.begin();
for (size_t r = 0; r < kNR; ++r) {
const size_t packed_ofs = (row_b + r) * B.Stride() + col0;
BF16* HWY_RESTRICT to = B_view.Row(r);
DecompressAndZeroPad(dbf, B_span, packed_ofs, to, kc);
// Verify that we zero-padded.
if constexpr (HWY_IS_DEBUG_BUILD) {
for (size_t i = kc; i < hwy::RoundUpTo(kc, hn::Lanes(dbf)); ++i) {
HWY_DASSERT(hwy::ConvertScalarTo<float>(to[i]) == 0.0f);
}
}
}
return B_view;
}
const MMArgs args_; // copy for locality
const size_t pkg_idx_;
StridedViewBF A_; // view into A or pkg_A_, both of which are padded.
const IndexRange range_np_;
// From MMConfig:
const size_t mr_;
const IndexRangePartition ranges_mc_;
const IndexRangePartition ranges_kc_;
const IndexRangePartition ranges_nc_;
const MMOrder order_;
const size_t inner_tasks_;
const MMOut out_;
const size_t line_bytes_;
}; // MMPerPackage
// Stateless, wraps member functions.
struct MMImpl {
// Returns existing entry for the given key or -1.
static HWY_INLINE intptr_t IndexOfKey(MMKeys::Key key, const MMKeys& keys) {
const hwy::Span<const uint64_t> all_keys = keys.Keys();
// TODO: SIMD scan
for (size_t i = 0; i < all_keys.size(); ++i) {
if (all_keys[i] == key) return static_cast<intptr_t>(i);
}
return -1;
}
// Called from `MatMul` from two places: either with the next autotune config,
// or with the best config.
template <typename TA, typename TB, typename TC>
static HWY_NOINLINE void DoMatMul(const MatPtrT<TA>& A, const MatPtrT<TB>& B,
RowPtrs<TC> C_rows, const MMArgs& args,
const MMConfig& config) {
static const uint32_t zone_id = PROFILER_ADD_ZONE("MM.DoMatMul");
// Outermost loop: static NUMA-aware partition of B rows across packages.
args.env->parallel.ForPkg(
args.per_key->ranges_np.NumTasks(), [&](size_t pkg_idx) {
MMZone matmul_zone;
matmul_zone.MaybeEnter(pkg_idx, zone_id, args);
const IndexRange& range_np = args.per_key->ranges_np.Range(pkg_idx);
MMPerPackage(A, args, config, pkg_idx, range_np)(B, C_rows);
});
}
};
// Computes the matrix product `A * B * scale [+ add]` and stores it in `C`.
//
// `A` is a row-major matrix with `M` rows and `B` is transposed. The latter's
// `K = B.Cols()`, which must match `A.Cols()`, is the number
// of rows in the original B. `N = C.Cols()` must be a multiple of 4. There
// are no other restrictions on shape, though performance is better when `M % 4
// == 0` or `M <= 4`.
//
// NOTE: if A and/or B are BF16 and padded, the interval `[Cols(),
// hwy::RoundUpTo(Cols(), hn::Lanes(dbf))` must be zero-initialized to match
// the behavior of `DecompressAndZeroPad`. We check this in debug builds.
//
// If `add` is non-null, the row-vector `add` is added to each of the `M` rows
// of `C`, which is a row-major matrix with arbitrary stride. A scale for
// `add` is not supported, so make sure its scale is 1.
//
// Must not be called concurrently with the same `env`. The first few calls
// for a given shape will try different configs. The best is recorded in `env`
// and will be used for subsequent calls with that shape.
//
// Returns the (autotuning) state for the current shape. This pointer may be
// invalidated by the next call to `MatMul`.
//
// Uses considerable stack space: at least 40 KiB per thread.
template <typename TA, typename TB, typename TC>
HWY_NOINLINE MMPerKey* MatMul(const MatPtrT<TA>& A, const MatPtrT<TB>& B,
const float* HWY_RESTRICT add, MatMulEnv& env,
MatPtrT<TC>& C) {
RowPtrs<TC> C_rows(C.GetRowPtrs());
if (HWY_UNLIKELY(!C.GetRowPtrs())) {
if constexpr (HWY_IS_DEBUG_BUILD) {
fprintf(stderr,
"MatMul perf warning: setting row pointers because "
"%s.AttachRowPtrs() was not called.\n",
C.Name());
}
HWY_DASSERT(C.HasPtr());
for (size_t r = 0; r < C.Rows(); ++r) {
env.row_ptrs[0][r] = reinterpret_cast<uint8_t*>(C.Row(r));
}
C_rows = RowPtrs<TC>(env.row_ptrs[0].get());
}
const Allocator& allocator = env.ctx.allocator;
const size_t M = A.Rows();
const size_t K = A.Cols();
const size_t N = B.Rows();
const MMKeys::Key key = MMKeys::KeyFromDims(M, K, N);
intptr_t index = MMImpl::IndexOfKey(key, env.keys);
// First time we see this shape/key.
if (HWY_UNLIKELY(index < 0)) {
env.keys.Append(key, allocator);
size_t max_packages = MMParallel::kMaxPackages;
// For low-batch, multiple sockets only help if binding is enabled.
if (!allocator.ShouldBind() && M <= 4) {
max_packages = 1;
}
// invalidates `MMAutoTune::Best()`
index = env.per_key.size();
env.per_key.push_back(
MMPerKey(max_packages, N, sizeof(TC), kNR, env.parallel));
}
MMPerKey& per_key = env.per_key[index];
MMAutoTune<MMConfig>& tuner = per_key.autotune;
const MMArgs args(env, per_key, static_cast<double>(A.Scale()) * B.Scale(),
add, env.storage.Partial());
if (HWY_LIKELY(tuner.Best())) {
MMImpl::DoMatMul(A, B, C_rows, args, *tuner.Best());
return &per_key;
}
PROFILER_ZONE("Matmul.Autotune");
// First call: enumerate all feasible configs.
if (HWY_UNLIKELY(!tuner.HasCandidates())) {
// Ensure matrix dimensions match each other.
HWY_ASSERT(K == B.Cols());
HWY_ASSERT(M <= MMStorage::kMaxM);
HWY_ASSERT(K <= MMStorage::kMaxK);
HWY_ASSERT(N <= MMStorage::kMaxN);
HWY_ASSERT(N % kNR == 0);
// Negligible CPU time.
tuner.SetCandidates(MMCandidates(allocator, M, K, N, sizeof(TC), kMaxMR,
kNR, per_key.ranges_np, env.print_config));
}
const MMConfig& cfg = tuner.NextConfig();
const uint64_t t0 = hwy::timer::Start();
MMImpl::DoMatMul(A, B, C_rows, args, cfg);
const uint64_t t1 =
env.have_timer_stop ? hwy::timer::Stop() : hwy::timer::Start();
const double min_elapsed = static_cast<double>(tuner.NotifyTicks(t1 - t0)) /
hwy::platform::InvariantTicksPerSecond();
const double flops = 2 * M * K * N / min_elapsed; // * 2 for FMA
if (HWY_UNLIKELY(env.print_measurement && tuner.ShouldPrint())) {
fprintf(stderr, "%7.1f,%.2f,%zu,%4zu,%4zu,%5zu,%s,%zu,%s\n", flops * 1E-9,
min_elapsed * 1E3, cfg.MR(), cfg.MC(), cfg.KC(), cfg.NC(),
StringFromOrder(cfg.Order()), cfg.InnerTasks(),
StringFromOut(cfg.Out()));
}
if (HWY_UNLIKELY(env.print_best && tuner.Best())) {
const auto ratio = [per_key](uint64_t ticks) -> double {
return static_cast<double>(ticks) /
static_cast<double>(per_key.autotune.BestTicks());
};
const MMConfig& best = *tuner.Best();
fprintf(stderr,
"\n%zu,%zu,%zu,%7.1f,%.2f,%zu,%4zu,%4zu,%5zu,%s,%zu,%s,%.2f,%.2f\n",
M, K, N, flops * 1E-9, min_elapsed * 1E3, best.MR(), best.MC(),
best.KC(), best.NC(), StringFromOrder(best.Order()),
best.InnerTasks(), StringFromOut(best.Out()),
ratio(tuner.WorstMinTicks()), ratio(tuner.FirstConfigTicks()));
}
return &per_key;
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#endif // NOLINT