gemma.cpp/gemma/weights.cc

554 lines
22 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gemma/weights.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <mutex> // NOLINT
#include <string>
#include <vector>
#include "compression/compress.h"
#include "compression/types.h"
#include "gemma/configs.h"
#include "gemma/gemma_args.h"
#include "gemma/model_store.h"
#include "io/blob_store.h"
#include "util/mat.h"
#include "util/threading_context.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/highway.h"
#include "hwy/profiler.h"
// TODO: move into foreach_target
#include "compression/compress-inl.h"
namespace gcpp {
// Copies att_weights from `attn_vec_einsum_w`.
void LayerWeightsPtrs::InitAttWeights(std::vector<MatOwner>& mat_owners,
const Allocator& allocator) {
// We only use this tensor for Gemma layers.
if (layer_config.type != LayerAttentionType::kGemma) return;
// Files must have one or the other.
HWY_ASSERT(attn_vec_einsum_w.HasPtr() ^ att_weights.HasPtr());
// Done if we already read the transposed tensor.
if (att_weights.HasPtr() && !attn_vec_einsum_w.HasPtr()) return;
// NUQ is handled by a specialization in weights.cc.
HWY_ASSERT(attn_vec_einsum_w.GetType() != Type::kNUQ);
const size_t model_dim = layer_config.model_dim;
const size_t heads = layer_config.heads;
const size_t qkv_dim = layer_config.qkv_dim;
// Reshape [heads, model_dim, qkv_dim] to [model_dim, heads * qkv_dim].
att_weights.SetType(attn_vec_einsum_w.GetType());
HWY_ASSERT(att_weights.Rows() == model_dim);
HWY_ASSERT(att_weights.Cols() == heads * qkv_dim);
HWY_ASSERT(attn_vec_einsum_w.Rows() == heads * model_dim);
HWY_ASSERT(attn_vec_einsum_w.Cols() == qkv_dim);
{
static std::mutex m;
std::lock_guard<std::mutex> lock(m);
mat_owners.push_back(MatOwner());
mat_owners.back().AllocateFor(att_weights, allocator, MatPadding::kOdd);
}
const size_t T_bytes = att_weights.ElementBytes();
for (size_t m = 0; m < model_dim; ++m) {
uint8_t* HWY_RESTRICT out_row = att_weights.RowBytes(m);
for (size_t h = 0; h < heads; ++h) {
hwy::CopyBytes(attn_vec_einsum_w.RowBytes(h * model_dim + m),
out_row + h * qkv_dim * T_bytes, qkv_dim * T_bytes);
}
}
att_weights.SetScale(attn_vec_einsum_w.Scale());
}
// For FFN. Fast, only updates pointers.
void LayerWeightsPtrs::SplitW1() {
// Used for Gemma layers; FFWVit uses different tensors.
if (layer_config.type == LayerAttentionType::kVit) return;
// Files have both or neither of w1 and w2.
HWY_ASSERT(gating_einsum_w1.HasPtr() == gating_einsum_w2.HasPtr());
// w is mutually exclusive with w1 and w2 in the file.
HWY_ASSERT(gating_einsum_w.HasPtr() ^ gating_einsum_w1.HasPtr());
// Done if we already read split tensors. Note that they are not
// necessarily the same type.
if (gating_einsum_w1.HasPtr() && !gating_einsum_w.HasPtr()) return;
const size_t ff_hidden_dim = layer_config.ff_hidden_dim;
HWY_ASSERT(gating_einsum_w.Rows() == 2 * ff_hidden_dim);
HWY_ASSERT(gating_einsum_w1.Rows() == ff_hidden_dim);
HWY_ASSERT(gating_einsum_w2.Rows() == ff_hidden_dim);
// Cols are the model_dim but we don't have ModelConfig here.
HWY_ASSERT(gating_einsum_w1.Cols() == gating_einsum_w.Cols());
HWY_ASSERT(gating_einsum_w2.Cols() == gating_einsum_w.Cols());
const size_t stride = gating_einsum_w.Stride();
gating_einsum_w1.SetPtr(gating_einsum_w.RowBytes(0), stride);
gating_einsum_w2.SetPtr(gating_einsum_w.RowBytes(ff_hidden_dim), stride);
gating_einsum_w1.SetType(gating_einsum_w.GetType());
gating_einsum_w2.SetType(gating_einsum_w.GetType());
gating_einsum_w1.SetScale(gating_einsum_w.Scale());
gating_einsum_w2.SetScale(gating_einsum_w.Scale());
gating_einsum_w.SetPtr(nullptr, gating_einsum_w.Cols());
}
// For attention, which might not have a w2. Fast, only updates pointers.
void LayerWeightsPtrs::SplitAttW1() {
// We only use this tensor for Gemma layers.
if (layer_config.type != LayerAttentionType::kGemma) return;
// w is mutually exclusive with w1 in the file.
HWY_ASSERT(qkv_einsum_w.HasPtr() ^ qkv_einsum_w1.HasPtr());
// Done if we already read split tensors. Note that w2 does not exist for
// MHA, and otherwise might not be the same type.
if (qkv_einsum_w1.HasPtr() && !qkv_einsum_w.HasPtr()) return;
const size_t w1_rows = layer_config.heads * layer_config.qkv_dim;
const size_t w2_rows = layer_config.kv_heads * 2 * layer_config.qkv_dim;
HWY_ASSERT(qkv_einsum_w.Rows() == w1_rows + w2_rows);
HWY_ASSERT(qkv_einsum_w1.Rows() == w1_rows);
HWY_ASSERT(qkv_einsum_w2.Rows() == w2_rows);
// Cols are the model_dim but we don't have ModelConfig here.
HWY_ASSERT(qkv_einsum_w1.Cols() == qkv_einsum_w.Cols());
HWY_ASSERT(qkv_einsum_w2.Cols() == qkv_einsum_w.Cols());
const size_t stride = qkv_einsum_w.Stride();
qkv_einsum_w1.SetPtr(qkv_einsum_w.RowBytes(0), stride);
qkv_einsum_w2.SetPtr(qkv_einsum_w.RowBytes(w1_rows), stride);
qkv_einsum_w1.SetType(qkv_einsum_w.GetType());
qkv_einsum_w2.SetType(qkv_einsum_w.GetType());
qkv_einsum_w1.SetScale(qkv_einsum_w.Scale());
qkv_einsum_w2.SetScale(qkv_einsum_w.Scale());
qkv_einsum_w.SetPtr(nullptr, qkv_einsum_w.Cols());
}
// Must be called after reading weights via `ForEachTensor`.
// TODO: exporters should bake this into the weights already.
// WARNING: called from multiple threads; `mat_owners` requires a lock.
void LayerWeightsPtrs::Fixup(std::vector<MatOwner>& mat_owners,
const Allocator& allocator) {
// TODO(janwas): handle NUQ
InitAttWeights(mat_owners, allocator);
SplitW1();
SplitAttW1();
}
static void HWY_MAYBE_UNUSED InitAttWeightsNUQ(
const LayerConfig& layer_config, MatPtrT<NuqStream>& attn_vec_einsum_w,
MatPtrT<NuqStream>& att_weights, std::vector<MatOwner>& mat_owners) {
if (!attn_vec_einsum_w.HasPtr()) return;
HWY_ASSERT(attn_vec_einsum_w.GetType() == Type::kNUQ);
HWY_ASSERT(att_weights.HasPtr());
att_weights.SetType(Type::kNUQ);
const size_t model_dim = layer_config.model_dim;
const size_t heads = layer_config.heads;
const size_t qkv_dim = layer_config.qkv_dim;
// Reshape [kHeads, kModelDim, kQKVDim] to [kModelDim, kHeads * kQKVDim].
hwy::AlignedFreeUniquePtr<float[]> attn_vec_einsum_w_tmp =
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
hwy::AlignedFreeUniquePtr<float[]> att_weights_tmp =
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
const hwy::HWY_NAMESPACE::ScalableTag<float> df;
HWY_NAMESPACE::DecompressAndZeroPad(df, attn_vec_einsum_w.Span(), 0,
attn_vec_einsum_w_tmp.get(),
model_dim * heads * qkv_dim);
for (size_t m = 0; m < model_dim; ++m) {
float* HWY_RESTRICT out_row = att_weights_tmp.get() + m * heads * qkv_dim;
for (size_t h = 0; h < heads; ++h) {
hwy::CopyBytes(
attn_vec_einsum_w_tmp.get() + h * model_dim * qkv_dim + m * qkv_dim,
out_row + h * qkv_dim, qkv_dim * sizeof(float));
}
}
CompressWorkingSet work;
hwy::ThreadPool pool(0);
HWY_NAMESPACE::Compress(att_weights_tmp.get(), model_dim * heads * qkv_dim,
work, att_weights.Span(),
/*packed_ofs=*/0, pool);
att_weights.SetScale(attn_vec_einsum_w.Scale());
}
static void HWY_MAYBE_UNUSED SplitW1NUQ(const LayerConfig& layer_config) {
// TODO(janwas): implement.
}
// Zero-initializes only the allocated tensors in `*this`.
void WeightsPtrs::ZeroInit() {
ForEachTensor(nullptr, nullptr, [](const TensorArgs& t) {
if (!t.mat.HasPtr()) return;
gcpp::ZeroInit(t.mat);
});
}
// Copies only the allocated tensors in `*this` from tensors in `other`.
void WeightsPtrs::CopyFrom(const WeightsPtrs& other) {
ForEachTensor(const_cast<WeightsPtrs*>(&other), nullptr,
[](const TensorArgs& t) {
if (!t.mat.HasPtr()) return;
HWY_ASSERT(t.other_mat1 && t.other_mat1->HasPtr());
CopyMat(*t.other_mat1, t.mat);
});
}
// For reshaping file tensors to the shape expected by the code. This would
// ideally already happen in the importer. Called by `ReadFromBlobs`.
void WeightsPtrs::Fixup(std::vector<MatOwner>& mat_owners,
ThreadingContext& ctx) {
const size_t cluster_idx = 0;
ParallelFor(ParallelismStrategy::kFlat, c_layers.size(), ctx, cluster_idx,
[&](uint64_t layer, size_t /*worker*/) {
GetLayer(layer)->Fixup(mat_owners, ctx.allocator);
});
ParallelFor(ParallelismStrategy::kFlat, vit_layers.size(), ctx, cluster_idx,
[&](uint64_t layer, size_t /*worker*/) {
VitLayer(layer)->Fixup(mat_owners, ctx.allocator);
});
}
std::vector<uint32_t> WeightsPtrs::AddTensorDataToWriter(
BlobWriter& writer) const {
std::vector<uint32_t> serialized_mat_ptrs;
// ForEachTensor is non-const but the lambda does not modify *this.
const_cast<WeightsPtrs*>(this)->ForEachTensor(
nullptr, nullptr, [&](const TensorArgs& t) {
if (t.flags & TensorArgs::kMaybeRead && !t.mat.HasPtr()) return;
HWY_ASSERT_M(t.mat.HasPtr(), t.mat.Name());
writer.Add(t.mat.Name(), t.mat.Packed(), t.mat.PackedBytes());
t.mat.AppendTo(serialized_mat_ptrs);
});
return serialized_mat_ptrs;
}
// Decides whether to read or map based on heuristics and user override.
static WeightsPtrs::Mode ChooseMode(uint64_t file_bytes,
const LoaderArgs& loader,
const InferenceArgs& inference,
const Allocator& allocator) {
Tristate to_bf16 = loader.to_bf16;
Tristate map = loader.map;
// Disable mapping if not padded to the base page size.
if (file_bytes % allocator.BasePageBytes() != 0) {
if (map == Tristate::kTrue) { // Only complain if explicitly requested.
HWY_WARN("Unable to map non-padded file (%zu, %zu), reading instead.",
static_cast<size_t>(file_bytes >> 10),
allocator.BasePageBytes());
}
map = Tristate::kFalse;
}
// Check for user override:
if (to_bf16 == Tristate::kTrue && map == Tristate::kTrue) {
HWY_WARN("Cannot have to_bf16 && map, to_bf16 takes precedence.");
}
if (to_bf16 == Tristate::kTrue) return WeightsPtrs::Mode::kReadBF16;
if (map == Tristate::kTrue) return WeightsPtrs::Mode::kMap;
if (to_bf16 == Tristate::kDefault) {
// Heuristic: sub-bf16 compression is not helpful if compute-bound.
to_bf16 = (inference.decode_qbatch_size >= 128) ? Tristate::kTrue
: Tristate::kFalse;
}
if (map == Tristate::kDefault) {
// Heuristic: map if large fraction of total. Do not decide based on
// `FreeMiB` because it is generally low.
const size_t file_mib = file_bytes >> 20;
const size_t total_mib = allocator.TotalMiB();
if (file_mib > total_mib) {
HWY_WARN("Weight file %zu MiB > detected memory %zu MiB.",
static_cast<size_t>(file_mib), total_mib);
}
// Large fraction of total.
map = (file_mib >= total_mib / 3) ? Tristate::kTrue : Tristate::kFalse;
}
// If the `map` heuristic triggers, use that for safety.
if (map == Tristate::kTrue) return WeightsPtrs::Mode::kMap;
return (to_bf16 == Tristate::kTrue) ? WeightsPtrs::Mode::kReadBF16
: WeightsPtrs::Mode::kRead;
}
struct TensorToRead {
MatPtr* mat;
BlobRange range;
// Some tensors opt out of padding via kPacked flags.
MatPadding padding;
// only for kReadBF16
bool keep_type = false;
Type prev_type;
};
// Allocates multiple in parallel and binds to NUMA nodes.
static void AllocateAndBindAll(std::vector<TensorToRead>& tensors,
const WeightsPtrs::Mode mode,
std::vector<MatOwner>& owners,
ThreadingContext& ctx) {
const size_t start = owners.size();
owners.resize(start + tensors.size());
// Allocate in parallel because faulting in large tensors is slow.
ctx.pools.Pool().Run(
0, tensors.size(), [&](uint64_t task, size_t /*thread*/) {
TensorToRead& tensor = tensors[task];
MatPtr& mat = *tensor.mat;
tensor.prev_type = mat.GetType();
// We only care about MatMul inputs; skip F32 or small tensors.
if (tensor.prev_type == Type::kF32 || mat.Rows() < 1024) {
tensor.keep_type = true;
tensor.padding = MatPadding::kPacked; // single I/O for simplicity
} else if (mode == WeightsPtrs::Mode::kReadBF16) {
mat.SetType(Type::kBF16);
}
owners[start + task].AllocateFor(*tensor.mat, ctx.allocator,
tensor.padding);
});
}
// Mode == kMap. CPU time is negligible.
static void MapAll(const std::vector<TensorToRead>& tensors,
const MapPtr& mapped, uint64_t file_bytes) {
for (size_t i = 0; i < tensors.size(); ++i) {
// SetPtr does not change the stride, but it is expected to be packed
// because that is what Compress() writes to the file.
const size_t mat_bytes = tensors[i].mat->PackedBytes();
// Ensure blob size matches that computed from metadata.
HWY_ASSERT_M(mat_bytes == tensors[i].range.bytes, tensors[i].mat->Name());
// Ensure the blob lies within the file mapping.
const uint64_t offset = tensors[i].range.offset;
HWY_ASSERT_M(offset + mat_bytes <= file_bytes, tensors[i].mat->Name());
tensors[i].mat->SetPtr(const_cast<uint8_t*>(mapped.get() + offset),
tensors[i].mat->Stride());
}
}
// Mode == kReadBF16:
template <typename T>
static void DecompressToBF16(MatPtr& mat,
const hwy::AlignedFreeUniquePtr<uint8_t[]>& buf) {
hwy::HWY_NAMESPACE::ScalableTag<BF16> dbf;
const size_t cols = mat.Cols();
const size_t num_packed = CompressedArrayElements<T>(mat.Extents().Area());
const PackedSpan<T> packed{HWY_RCAST_ALIGNED(T*, buf.get()), num_packed};
size_t packed_ofs = 0;
for (size_t r = 0; r < mat.Rows(); ++r, packed_ofs += cols) {
HWY_NAMESPACE::DecompressAndZeroPad(
dbf, packed, packed_ofs, HWY_RCAST_ALIGNED(BF16*, mat.RowBytes(r)),
cols);
}
}
static void ReadAllToBF16(const std::vector<TensorToRead>& tensors,
const BlobReader& reader, ThreadingContext& ctx) {
static const auto zone =
ctx.profiler.AddZone("Startup.Weights.ReadAllToBF16");
// Especially TSAN is slow enough to warrant hierarchical parallelism.
const ParallelismStrategy strategy = HWY_IS_DEBUG_BUILD
? ParallelismStrategy::kHierarchical
: ParallelismStrategy::kFlat;
ParallelFor(strategy, tensors.size(), ctx, /*cluster_idx=*/0,
[&](uint64_t task, size_t thread) {
PROFILER_ZONE3(ctx.profiler, thread, zone);
const TensorToRead& tensor = tensors[task];
MatPtr& mat = *tensor.mat;
if (tensor.keep_type) {
HWY_ASSERT(reader.file().Read(
tensor.range.offset, tensor.range.bytes, mat.Packed()));
return;
}
// Read to a temporary buffer.
const hwy::AlignedFreeUniquePtr<uint8_t[]> buf =
hwy::AllocateAligned<uint8_t>(tensor.range.bytes);
HWY_ASSERT(reader.file().Read(tensor.range.offset,
tensor.range.bytes, buf.get()));
if constexpr (GEMMA_ENABLE_NUQ) {
if (tensor.prev_type == Type::kNUQ) {
return DecompressToBF16<NuqStream>(*tensor.mat, buf);
}
}
switch (tensor.prev_type) {
case Type::kF32:
return DecompressToBF16<float>(*tensor.mat, buf);
case Type::kBF16:
return DecompressToBF16<BF16>(*tensor.mat, buf);
case Type::kSFP:
return DecompressToBF16<SfpStream>(*tensor.mat, buf);
default:
HWY_ABORT("Unsupported type %s",
TypeName(tensor.prev_type));
}
});
}
// Mode == kRead:
static std::vector<IOBatch> MakeBatches(
const std::vector<TensorToRead>& tensors, const uint64_t file_bytes) {
PROFILER_ZONE("Startup.Weights.MakeBatches");
// Batches must be contiguous but blobs are padded, hence at least one
// batch per tensor, and more when tensor rows exceed the batch size.
std::vector<IOBatch> batches;
batches.reserve(tensors.size());
for (size_t i = 0; i < tensors.size(); ++i) {
const BlobRange& range = tensors[i].range;
MatPtr& mat = *tensors[i].mat;
uint64_t offset = range.offset;
HWY_ASSERT(range.End() <= file_bytes);
batches.emplace_back(offset, range.key_idx);
const size_t file_bytes_per_row = mat.Cols() * mat.ElementBytes();
const size_t mem_stride_bytes = mat.Stride() * mat.ElementBytes();
uint8_t* row_bytes = mat.RowBytes(0);
for (size_t r = 0; r < mat.Rows(); ++r) {
if (!batches.back().Add(row_bytes, file_bytes_per_row)) { // Full batch.
batches.emplace_back(offset, range.key_idx);
// Adding to an empty batch is always successful.
HWY_ASSERT(batches.back().Add(row_bytes, file_bytes_per_row));
}
offset += file_bytes_per_row;
row_bytes += mem_stride_bytes;
}
HWY_ASSERT(offset == range.End());
}
HWY_ASSERT(batches.size() >= tensors.size());
return batches;
}
// Parallel synchronous I/O. Note that O_DIRECT seems undesirable because we
// want to use the OS cache between consecutive runs.
static void ReadBatches(const BlobReader& reader,
const std::vector<IOBatch>& batches,
ThreadingContext& ctx) {
static const auto zone = ctx.profiler.AddZone("Startup.Weights.ReadBatches");
// >5x speedup from parallel reads when cached.
ctx.pools.Pool().Run(0, batches.size(), [&](uint64_t i, size_t thread) {
PROFILER_ZONE3(ctx.profiler, thread, zone);
const IOBatch& batch = batches[i];
const std::string& key = reader.Keys()[batch.KeyIdx()];
const uint64_t bytes_read = batch.Read(reader.file());
if (bytes_read != batch.TotalBytes()) {
HWY_ABORT("Read failed for %s from %zu, %zu bytes; got %zu.", key.c_str(),
static_cast<size_t>(batch.Offset()),
static_cast<size_t>(batch.TotalBytes()),
static_cast<size_t>(bytes_read));
}
});
}
// Aborts on error. Updates `mode` to the actual mode used. Returns mapped
// memory or nullptr if `kMap` was not used.
static MapPtr MapOrReadAll(std::vector<TensorToRead>& tensors,
BlobReader& reader, WeightsPtrs::Mode* mode,
std::vector<MatOwner>& mat_owners,
ThreadingContext& ctx) {
if (*mode == WeightsPtrs::Mode::kMap) {
if (MapPtr mapped = reader.Map()) {
MapAll(tensors, mapped, reader.file().FileSize());
return mapped;
}
HWY_WARN("Failed to map file (%zu KiB), reading instead.",
static_cast<size_t>(reader.file_bytes() >> 10));
// If we wanted to map but failed, memory is probably not plentiful, so
// fall through to kRead because kReadBF16 requires more memory.
*mode = WeightsPtrs::Mode::kRead;
}
{
PROFILER_ZONE("Startup.Weights.Allocate");
// NOTE: this changes the stride of `mats`!
AllocateAndBindAll(tensors, *mode, mat_owners, ctx);
}
if (*mode == WeightsPtrs::Mode::kReadBF16) {
ReadAllToBF16(tensors, reader, ctx);
return MapPtr();
}
const std::vector<IOBatch> batches =
MakeBatches(tensors, reader.file_bytes());
ReadBatches(reader, batches, ctx);
return MapPtr();
}
WeightsPtrs::Mode WeightsPtrs::ReadFromBlobs(const ModelStore& model,
BlobReader& reader,
const LoaderArgs& loader,
const InferenceArgs& inference,
std::vector<MatOwner>& mat_owners,
ThreadingContext& ctx) {
PROFILER_ZONE("Startup.Weights.ReadFromBlobs");
// List of tensors to read/map, and where from.
std::vector<TensorToRead> tensors;
// Enumerate all weights (negligible cost).
ForEachTensor(nullptr, nullptr, [&](const TensorArgs& t) {
const MatPadding padding = (t.flags & TensorArgs::kPacked)
? MatPadding::kPacked
: MatPadding::kOdd;
size_t key_idx;
if (model.FindAndUpdateMatPtr(t.mat, key_idx)) {
tensors.push_back(
{.mat = &t.mat, .range = reader.Range(key_idx), .padding = padding});
return;
}
if (t.flags & TensorArgs::kMaybeRead) return; // optional and not found.
HWY_ABORT("Tensor %s is required but not found in file.", t.mat.Name());
});
Mode mode = ChooseMode(reader.file_bytes(), loader, inference, ctx.allocator);
mapped_ = MapOrReadAll(tensors, reader, &mode, mat_owners, ctx);
{
PROFILER_ZONE("Startup.Fixup");
Fixup(mat_owners, ctx);
}
return mode;
}
} // namespace gcpp