mirror of https://github.com/google/gemma.cpp.git
155 lines
5.0 KiB
C++
155 lines
5.0 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "backprop/activations.h"
|
|
#include "backprop/backward.h"
|
|
#include "backprop/forward.h"
|
|
#include "backprop/optimizer.h"
|
|
#include "backprop/prompt.h"
|
|
#include "backprop/sampler.h"
|
|
#include "compression/shared.h"
|
|
#include "gemma/configs.h"
|
|
#include "gemma/gemma.h"
|
|
#include "gemma/tokenizer.h"
|
|
#include "gemma/weights.h"
|
|
#include "ops/ops.h"
|
|
#include "util/allocator.h"
|
|
#include "util/basics.h"
|
|
#include "util/threading.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
|
|
namespace gcpp {
|
|
|
|
TEST(OptimizeTest, GradientDescent) {
|
|
gcpp::ThreadingArgs threading_args;
|
|
threading_args.max_packages = 1;
|
|
threading_args.max_clusters = 1;
|
|
threading_args.pin = Tristate::kFalse;
|
|
ThreadingContext::SetArgs(threading_args);
|
|
MatMulEnv env(ThreadingContext::Get());
|
|
const Allocator& allocator = env.ctx.allocator;
|
|
hwy::ThreadPool& pool = env.ctx.pools.Pool();
|
|
std::mt19937 gen(42);
|
|
|
|
ModelConfig config(Model::GEMMA_TINY, Type::kF32,
|
|
ChooseWrapping(Model::GEMMA_TINY));
|
|
config.eos_id = ReverseSequenceSampler::kEndToken;
|
|
|
|
WeightsOwner grad(Type::kF32), grad_m(Type::kF32), grad_v(Type::kF32);
|
|
grad.AllocateForTest(config, pool);
|
|
grad_m.AllocateForTest(config, pool);
|
|
grad_v.AllocateForTest(config, pool);
|
|
grad_m.ZeroInit();
|
|
grad_v.ZeroInit();
|
|
ForwardPass<float> forward(config), backward(config);
|
|
KVCache kv_cache(config, /*prefill_tbatch_size=*/16);
|
|
|
|
MatStorageT<float> inv_timescale = CreateInvTimescale(
|
|
allocator, config.layer_configs[0].qkv_dim,
|
|
config.layer_configs[0].post_qk == PostQKType::HalfRope);
|
|
|
|
Gemma gemma(config, GemmaTokenizer(kMockTokenizer), env);
|
|
|
|
const auto generate = [&](const std::vector<int>& prompt) {
|
|
std::vector<int> reply;
|
|
auto stream_token = [&reply](int token, float) {
|
|
reply.push_back(token);
|
|
return token != ReverseSequenceSampler::kEndToken;
|
|
};
|
|
RuntimeConfig runtime = {
|
|
.max_generated_tokens = 16,
|
|
.temperature = 1.0f,
|
|
.gen = &gen,
|
|
.verbosity = 0,
|
|
.stream_token = stream_token,
|
|
};
|
|
TimingInfo timing_info;
|
|
gemma.Generate(runtime, prompt, 0, kv_cache, timing_info);
|
|
return reply;
|
|
};
|
|
|
|
// Sanity check of reply tokens.
|
|
// 1) Its length should be greater than the prompt.
|
|
// 2) The prompt should be a prefix of the reply.
|
|
auto verify = [&](const Prompt& prompt) {
|
|
const std::vector<int>& context = prompt.context();
|
|
std::vector<int> reply = generate(context);
|
|
if (reply.size() <= context.size()) return false;
|
|
return std::equal(context.begin(), context.end(), reply.begin(),
|
|
reply.begin() + context.size());
|
|
};
|
|
|
|
gemma.MutableWeights().RandInit(1.0f, gen);
|
|
gemma.MutableWeights().Reshape(pool);
|
|
|
|
printf("Initial weights:\n");
|
|
gemma.MutableWeights().LogWeightStatsF32();
|
|
|
|
constexpr size_t kBatchSize = 8;
|
|
constexpr float kAlpha = 0.001f;
|
|
constexpr float kBeta1 = 0.9f;
|
|
constexpr float kBeta2 = 0.999f;
|
|
constexpr float kEpsilon = 1e-8f;
|
|
|
|
constexpr float kMaxLoss = 20.0f;
|
|
|
|
ReverseSequenceSampler training_task({
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1});
|
|
size_t steps = 0;
|
|
size_t num_ok;
|
|
for (; steps < 1000; ++steps) {
|
|
std::mt19937 sgen(42);
|
|
grad.ZeroInit();
|
|
float total_loss = 0.0f;
|
|
num_ok = 0;
|
|
for (size_t i = 0; i < kBatchSize; ++i) {
|
|
Prompt prompt = training_task.Sample(sgen);
|
|
total_loss += CrossEntropyLossForwardPass(
|
|
prompt, *gemma.Weights().GetF32(), forward, inv_timescale, pool);
|
|
CrossEntropyLossBackwardPass(prompt, *gemma.Weights().GetF32(), forward,
|
|
*grad.GetF32(), backward, inv_timescale,
|
|
pool);
|
|
gemma.MutableWeights().Reshape(pool);
|
|
num_ok += verify(prompt) ? 1 : 0;
|
|
}
|
|
total_loss /= kBatchSize;
|
|
|
|
AdamUpdate(grad, kAlpha, kBeta1, kBeta2, kEpsilon, steps + 1,
|
|
gemma.Weights(), grad_m, grad_v, pool);
|
|
printf("step: %zu total_loss: %.15f num_ok: %zu/%zu\n",
|
|
steps, total_loss, num_ok, kBatchSize);
|
|
if (steps % 100 == 0) {
|
|
printf("Batch gradient:\n");
|
|
grad.LogWeightStatsF32();
|
|
}
|
|
if (total_loss < kMaxLoss) break; // Done
|
|
}
|
|
printf("Num steps: %zu\n", steps);
|
|
printf("Final weights:\n");
|
|
gemma.MutableWeights().LogWeightStatsF32();
|
|
EXPECT_LT(steps, 80);
|
|
EXPECT_EQ(num_ok, kBatchSize);
|
|
}
|
|
|
|
} // namespace gcpp
|