gemma.cpp/backprop/backward_scalar.h

353 lines
13 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_
#include <stddef.h>
#include <string.h>
#include <cmath>
#include <vector>
#include "backprop/activations.h"
#include "backprop/common_scalar.h"
#include "backprop/prompt.h"
#include "gemma/common.h" // EmbeddingScaling
#include "gemma/weights.h"
namespace gcpp {
template<typename T>
void MatMulVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx,
size_t N, size_t M, size_t K) {
memset(dx, 0, M * K * sizeof(dx[0]));
for (size_t i = 0; i < K; ++i) {
for (size_t j = 0; j < N; ++j) {
MulByConstAndAddT(dy[i * N + j], &x[i * M], &dw[j * M], M);
MulByConstAndAddT(dy[i * N + j], &w[j * M], &dx[i * M], M);
}
}
}
template<typename T>
void MultiHeadMatMulVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx,
size_t H, size_t N, size_t M, size_t K) {
memset(dx, 0, H * M * K * sizeof(dx[0]));
for (size_t i = 0; i < K; ++i) {
for (size_t j = 0; j < N; ++j) {
for (size_t h = 0; h < H; ++h) {
MulByConstAndAddT(dy[i * N + j], &x[i * H * M + h * M],
&dw[h * N * M + j * M], M);
MulByConstAndAddT(dy[i * N + j], &w[h * N * M + j * M],
&dx[i * H * M + h * M], M);
}
}
}
}
template<typename T>
void RMSNormVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx,
size_t N, size_t K) {
for (size_t i = 0; i < K; ++i) {
constexpr T eps(1e-6);
T ss = SquaredL2(x + i * N, N);
ss = T(1.0) / std::sqrt(ss / T(N) + eps);
for (size_t j = 0; j < N; ++j) {
dw[j] += dy[i * N + j] * x[i * N + j] * ss;
}
const T ss3 = ss * ss * ss / T(N);
T tmp = 0.0;
for (size_t j = 0; j < N; ++j) {
tmp += (T(1.0) + w[j]) * dy[i* N + j] * x[i * N + j];
}
tmp *= ss3;
for (size_t j = 0; j < N; ++j) {
dx[i * N + j] = ss * (T(1.0) + w[j]) * dy[i* N + j] - tmp * x[i * N + j];
}
}
}
template<typename T>
void SoftmaxVJPT(const T* y, T* dy, size_t N) {
T sum = {};
for (size_t i = 0; i < N; ++i) {
sum += y[i] * dy[i];
}
for (size_t i = 0; i < N; ++i) {
dy[i] = y[i] * (dy[i] - sum);
}
}
template<typename T>
void SoftmaxVJPT(const T* y, T* dy, size_t N, size_t K) {
for (size_t i = 0; i < K; ++i) {
SoftmaxVJPT(y + i * N, dy + i * N, N);
}
}
template<typename T>
T GeluDerivative(T x) {
static const T kMul = 0.044715;
static const T kSqrt2OverPi = 0.797884560804236;
static const T kMul2 = kSqrt2OverPi * T(3.0) * kMul;
const T x2 = x * x;
const T x3 = x2 * x;
const T arg = kSqrt2OverPi * (kMul * x3 + x);
const T tanh = std::tanh(arg);
const T cdf = T(0.5) * (T(1.0) + tanh);
const T dtanh = T(1.0) - tanh * tanh;
const T darg = kMul2 * x2 + kSqrt2OverPi;
return T(0.5) * x * dtanh * darg + cdf;
}
template<typename T>
void GatedGeluVJP(const T* in, const T* d_out, T* d_in, size_t N, size_t K) {
for (size_t i = 0; i < K; ++i) {
const T* x1 = in + i * 2 * N;
const T* x2 = x1 + N;
const T* v = d_out + i * N;
T* dx1 = d_in + i * 2 * N;
T* dx2 = dx1 + N;
for (size_t j = 0; j < N; ++j) {
dx1[j] = v[j] * x2[j] * GeluDerivative(x1[j]);
dx2[j] = v[j] * Gelu(x1[j]);
}
}
}
template <typename T>
void MaskedAttentionVJP(const T* qkv, const T* doutput, T* dqkv,
size_t num_tokens, size_t kHeads, size_t qkv_dim,
size_t seq_len) {
for (size_t pos = 0; pos < num_tokens; ++pos) {
const size_t offset = pos * (kHeads + 2) * qkv_dim;
memset(dqkv + offset, 0, (kHeads + 1) * qkv_dim * sizeof(qkv[0]));
}
for (size_t head = 0; head < kHeads; ++head) {
for (size_t pos = 0; pos < num_tokens; ++pos) {
const size_t qoffs = (pos * (kHeads + 2) + head) * qkv_dim;
const size_t aoffs = head * seq_len + pos * kHeads * seq_len;
const T* q = qkv + qoffs;
const T* dout = doutput + aoffs;
T* dq = dqkv + qoffs;
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
const size_t koffs = (pos2 * (kHeads + 2) + kHeads) * qkv_dim;
const T* k = qkv + koffs;
T* dk = dqkv + koffs;
MulByConstAndAddT(dout[pos2], k, dq, qkv_dim);
MulByConstAndAddT(dout[pos2], q, dk, qkv_dim);
}
}
}
}
template <typename T>
void MaskedSoftmaxVJPT(const T* y, T* dy, size_t num_tokens, size_t kHeads,
size_t seq_len) {
for (size_t head = 0; head < kHeads; ++head) {
for (size_t pos = 0; pos < num_tokens; ++pos) {
size_t offset = pos * kHeads * seq_len + head * seq_len;
SoftmaxVJPT(y + offset, dy + offset, pos + 1);
memset(dy + offset + pos + 1, 0, (seq_len - pos - 1) * sizeof(T));
}
}
}
template <typename T>
void MixByAttentionVJP(const T* qkv, const T* attention, const T* doutput,
T* dqkv, T* dattention, size_t num_tokens, size_t kHeads,
size_t qkv_dim, size_t seq_len) {
auto v_offset = [&](size_t pos) {
return (pos * (kHeads + 2) + kHeads + 1) * qkv_dim;
};
for (size_t pos = 0; pos < num_tokens; ++pos) {
memset(&dqkv[v_offset(pos)], 0, qkv_dim * sizeof(qkv[0]));
}
for (size_t head = 0; head < kHeads; ++head) {
for (size_t pos = 0; pos < num_tokens; ++pos) {
const size_t offset = head * qkv_dim + pos * kHeads * qkv_dim;
const size_t aoffset = head * seq_len + pos * kHeads * seq_len;
const T* att = &attention[aoffset];
const T* dout = &doutput[offset];
T* datt = &dattention[aoffset];
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
datt[pos2] = DotT(dout, &qkv[v_offset(pos2)], qkv_dim);
MulByConstAndAddT(att[pos2], dout, &dqkv[v_offset(pos2)], qkv_dim);
}
}
}
}
template<typename T>
void InputEmbeddingVJPT(const T* w, const std::vector<int>& tokens, T scaling,
const T* dy, T* dw, size_t N) {
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
for (size_t i = 0; i < num_tokens; ++i) {
int token = tokens[i];
MulByConstAndAddT(scaling, dy + i * N, dw + token * N, N);
}
}
template <typename T>
void LayerVJP(const LayerWeightsPtrs<T>& weights,
const ForwardLayer<T>& forward, const T* dy,
LayerWeightsPtrs<T>& grad, ForwardLayer<T>& backward,
size_t num_tokens) {
const LayerConfig& layer_config = weights.layer_config;
const size_t model_dim = layer_config.model_dim;
const size_t seq_len = forward.input.Rows();
const size_t qkv_dim = layer_config.qkv_dim;
const size_t kHeads = layer_config.heads;
const size_t kFFHiddenDim = layer_config.ff_hidden_dim;
const T kQueryScale = 1.0 / std::sqrt(T(qkv_dim));
MatMulVJPT(weights.linear_w.Packed(), forward.ffw_hidden_gated.Packed(), dy,
grad.linear_w.Packed(), backward.ffw_hidden_gated.Packed(),
model_dim, kFFHiddenDim, num_tokens);
GatedGeluVJP(forward.ffw_hidden.Packed(), backward.ffw_hidden_gated.Packed(),
backward.ffw_hidden.Packed(), kFFHiddenDim, num_tokens);
MatMulVJPT(weights.gating_einsum_w.Packed(), forward.pre_ffw_rms_out.Packed(),
backward.ffw_hidden.Packed(), grad.gating_einsum_w.Packed(),
backward.pre_ffw_rms_out.Packed(), kFFHiddenDim * 2, model_dim,
num_tokens);
RMSNormVJPT(weights.pre_ffw_norm_scale.Packed(),
forward.attention_out.Packed(), backward.pre_ffw_rms_out.Packed(),
grad.pre_ffw_norm_scale.Packed(), backward.attention_out.Packed(),
model_dim, num_tokens);
AddFromT(dy, backward.attention_out.Packed(), num_tokens * model_dim);
MultiHeadMatMulVJPT(
weights.attn_vec_einsum_w.Packed(), forward.att_out.Packed(),
backward.attention_out.Packed(), grad.attn_vec_einsum_w.Packed(),
backward.att_out.Packed(), kHeads, model_dim, qkv_dim, num_tokens);
MixByAttentionVJP(forward.qkv.Packed(), forward.att.Packed(),
backward.att_out.Packed(), backward.qkv.Packed(),
backward.att.Packed(), num_tokens, kHeads, qkv_dim,
seq_len);
MaskedSoftmaxVJPT(forward.att.Packed(), backward.att.Packed(), num_tokens,
kHeads, seq_len);
MaskedAttentionVJP(forward.qkv.Packed(), backward.att.Packed(),
backward.qkv.Packed(), num_tokens, kHeads, qkv_dim,
seq_len);
for (size_t pos = 0; pos < num_tokens; ++pos) {
T* qkv = backward.qkv.Packed() + pos * (kHeads + 2) * qkv_dim;
MulByConstT(kQueryScale, qkv, kHeads * qkv_dim);
}
for (int pos = 0; pos < num_tokens; ++pos) {
T* qkv = backward.qkv.Packed() + pos * (kHeads + 2) * qkv_dim;
for (size_t h = 0; h <= kHeads; ++h) {
Rope(qkv + h * qkv_dim, qkv_dim, -pos);
}
}
MatMulVJPT(weights.qkv_einsum_w.Packed(), forward.pre_att_rms_out.Packed(),
backward.qkv.Packed(), grad.qkv_einsum_w.Packed(),
backward.pre_att_rms_out.Packed(), (kHeads + 2) * qkv_dim,
model_dim, num_tokens);
RMSNormVJPT(weights.pre_attention_norm_scale.Packed(), forward.input.Packed(),
backward.pre_att_rms_out.Packed(),
grad.pre_attention_norm_scale.Packed(), backward.input.Packed(),
model_dim, num_tokens);
AddFromT(backward.attention_out.Packed(), backward.input.Packed(),
num_tokens * model_dim);
}
template <typename T>
void SoftcapVJPT(float cap, const T* y, T* dy, size_t N) {
const T inv_cap = T{1.0} / static_cast<T>(cap);
for (size_t i = 0; i < N; ++i) {
T scaled = y[i] * inv_cap; // tanh
dy[i] *= (T{1.0} - scaled * scaled);
}
}
template<typename T>
void CrossEntropyLossGrad(const T* x, T* dx, const Prompt& prompt, size_t V) {
T scaling = -1.0 / std::log(2.0);
const std::vector<int> tokens = prompt.tokens;
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
memset(dx, 0, V * num_tokens * sizeof(x[0]));
for (size_t i = 0; i < num_tokens; ++i) {
if (i + 1 < prompt.context_size) {
continue;
}
const int next_token = tokens[i + 1];
dx[i * V + next_token] = scaling / x[i * V + next_token];
}
}
template <typename T>
void CrossEntropyLossBackwardPass(const Prompt& prompt,
const ModelWeightsPtrs<T>& weights,
const ForwardPass<T>& forward,
ModelWeightsPtrs<T>& grad,
ForwardPass<T>& backward) {
const ModelConfig& config = weights.weights_config;
const size_t model_dim = config.model_dim;
const size_t vocab_size = config.vocab_size;
const size_t layers = config.layer_configs.size();
const std::vector<int> tokens = prompt.tokens;
const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1;
CrossEntropyLossGrad(forward.probs.Packed(), backward.logits.Packed(), prompt,
vocab_size);
SoftmaxVJPT(forward.probs.Packed(), backward.logits.Packed(), vocab_size,
num_tokens);
if (config.final_cap > 0.0f) {
for (size_t i = 0; i < num_tokens; ++i) {
SoftcapVJPT(config.final_cap, forward.logits.Packed() + i * vocab_size,
backward.logits.Packed() + i * vocab_size, vocab_size);
}
}
MatMulVJPT(weights.embedder_input_embedding.Packed(),
forward.final_norm_output.Packed(), backward.logits.Packed(),
grad.embedder_input_embedding.Packed(),
backward.final_norm_output.Packed(), vocab_size, model_dim,
num_tokens);
RMSNormVJPT(
weights.final_norm_scale.Packed(), forward.final_layer_output.Packed(),
backward.final_norm_output.Packed(), grad.final_norm_scale.Packed(),
backward.final_layer_output.Packed(), model_dim, num_tokens);
for (int layer = static_cast<int>(layers) - 1; layer >= 0; --layer) {
T* next_layer_grad = layer + 1 < layers
? backward.layers[layer + 1].input.Packed()
: backward.final_layer_output.Packed();
LayerVJP(*weights.GetLayer(layer), forward.layers[layer], next_layer_grad,
*grad.GetLayer(layer), backward.layers[layer], num_tokens);
}
const T kEmbScaling = EmbeddingScaling(model_dim);
InputEmbeddingVJPT(weights.embedder_input_embedding.Packed(), tokens,
kEmbScaling, backward.layers[0].input.Packed(),
grad.embedder_input_embedding.Packed(), model_dim);
}
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_