mirror of https://github.com/google/gemma.cpp.git
217 lines
7.7 KiB
C++
217 lines
7.7 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|
|
|
|
#include <math.h> // sqrtf
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <atomic>
|
|
#include <vector>
|
|
|
|
#include "gemma/configs.h" // ModelConfig
|
|
#include "ops/matmul.h" // MatMulEnv
|
|
#include "ops/ops.h" // CreateInvTimescale
|
|
#include "util/allocator.h" // Allocator
|
|
#include "util/basics.h" // BF16
|
|
#include "util/mat.h" // MatStorageT
|
|
|
|
namespace gcpp {
|
|
|
|
struct GriffinActivations {
|
|
GriffinActivations(const ModelConfig& config, size_t batch_size,
|
|
const Allocator& allocator)
|
|
: griffin_x(
|
|
MatFactory("griffin_x", batch_size, config.model_dim, allocator)),
|
|
griffin_y(
|
|
MatFactory("griffin_y", batch_size, config.model_dim, allocator)),
|
|
griffin_gate_x(MatFactory("griffin_gate_x", batch_size,
|
|
config.model_dim, allocator)),
|
|
griffin_multiplier(MatFactory("griffin_mul", batch_size,
|
|
config.model_dim, allocator)) {}
|
|
|
|
void SetBatchSize(size_t batch_size) {
|
|
if (griffin_x.Rows() == 0) return;
|
|
griffin_x.OverrideRows(batch_size);
|
|
griffin_y.OverrideRows(batch_size);
|
|
griffin_gate_x.OverrideRows(batch_size);
|
|
griffin_multiplier.OverrideRows(batch_size);
|
|
}
|
|
|
|
MatStorageT<float> griffin_x;
|
|
MatStorageT<float> griffin_y;
|
|
MatStorageT<float> griffin_gate_x;
|
|
MatStorageT<float> griffin_multiplier;
|
|
};
|
|
|
|
struct AttentionActivations {
|
|
// Returns the scale value to use for the query in the attention computation.
|
|
// Also called by ops_test.
|
|
static inline float ChooseQueryScale(const ModelConfig& config) {
|
|
if (config.query_scale == QueryScaleType::SqrtModelDimDivNumHeads)
|
|
return 1.0f / sqrtf(static_cast<float>(config.model_dim /
|
|
config.layer_configs[0].heads));
|
|
// QueryScaleType::SqrtKeySize
|
|
return 1.0f / sqrtf(static_cast<float>(config.layer_configs[0].qkv_dim));
|
|
}
|
|
|
|
AttentionActivations(
|
|
const ModelConfig& config, const LayerConfig& layer_config,
|
|
size_t batch_size, size_t seq_len, const Allocator& allocator,
|
|
std::vector<hwy::AlignedFreeUniquePtr<uint8_t*[]>>& row_ptrs)
|
|
: config(config),
|
|
|
|
// `vocab_size == 0` means it is for Vit part, VitAttention is still MHA
|
|
// and does not use an external KV cache.
|
|
q(MatFactory("q", batch_size,
|
|
config.vocab_size == 0
|
|
? layer_config.heads * 3 * layer_config.qkv_dim
|
|
: layer_config.heads * layer_config.qkv_dim,
|
|
allocator)),
|
|
|
|
pre_att_rms_out(MatFactory("pre_att_rms_out", batch_size,
|
|
config.model_dim, allocator)),
|
|
att(MatFactory("att", batch_size, layer_config.heads * seq_len,
|
|
allocator)),
|
|
att_out(MatFactory("att_out", batch_size,
|
|
layer_config.heads * layer_config.qkv_dim,
|
|
allocator)),
|
|
att_sums(
|
|
MatFactory("att_sums", batch_size, config.model_dim, allocator)),
|
|
|
|
inv_timescale(
|
|
CreateInvTimescale(allocator, layer_config.qkv_dim,
|
|
layer_config.post_qk == PostQKType::HalfRope)),
|
|
inv_timescale_global(CreateInvTimescale(
|
|
allocator, layer_config.qkv_dim,
|
|
layer_config.post_qk == PostQKType::HalfRope, 1000000.0)),
|
|
|
|
div_seq_len(static_cast<uint32_t>(seq_len)),
|
|
div_heads(static_cast<uint32_t>(layer_config.heads)),
|
|
query_scale(ChooseQueryScale(config)) {
|
|
// Batch size can be 0 in experimental code so do not assert.
|
|
if (batch_size == 0) {
|
|
static std::atomic_flag warned = ATOMIC_FLAG_INIT;
|
|
if (!warned.test_and_set()) {
|
|
HWY_WARN("Creating mostly empty activations with a batch_size of 0.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// For MatMul outputs, precompute their row pointers.
|
|
// If we forget any MatMul outputs here, debug builds print a warning but
|
|
// fill them in each MatMul call.
|
|
q.AllocateAndAttachRowPtrs(row_ptrs);
|
|
att_sums.AllocateAndAttachRowPtrs(row_ptrs);
|
|
}
|
|
|
|
void SetBatchSize(size_t batch_size) {
|
|
q.OverrideRows(batch_size);
|
|
|
|
pre_att_rms_out.OverrideRows(batch_size);
|
|
att.OverrideRows(batch_size);
|
|
att_out.OverrideRows(batch_size);
|
|
att_sums.OverrideRows(batch_size);
|
|
}
|
|
|
|
const ModelConfig& config;
|
|
|
|
MatStorageT<float> q; // query
|
|
|
|
MatStorageT<float> pre_att_rms_out;
|
|
MatStorageT<float> att; // attention vector
|
|
MatStorageT<float> att_out; // attention output
|
|
// Accumulation of attention outputs over heads
|
|
MatStorageT<BF16> att_sums;
|
|
|
|
// Rope
|
|
MatStorageT<float> inv_timescale;
|
|
MatStorageT<float> inv_timescale_global;
|
|
|
|
hwy::Divisor div_seq_len;
|
|
// Unfortunately, some models (Griffin) have non-power-of-two heads.
|
|
hwy::Divisor div_heads;
|
|
float query_scale;
|
|
};
|
|
|
|
struct Activations {
|
|
Activations(const ModelConfig& config, size_t batch_size, size_t seq_len,
|
|
const Allocator& allocator,
|
|
std::vector<hwy::AlignedFreeUniquePtr<uint8_t*[]>>& row_ptrs)
|
|
: layer_config(config.layer_configs[0]),
|
|
|
|
x(MatFactory("x", batch_size, config.model_dim, allocator)),
|
|
logits(MatFactory("logits", batch_size, config.vocab_size, allocator)),
|
|
|
|
pre_ffw_rms_out(MatFactory("pre_ffw_rms_out", batch_size,
|
|
config.model_dim, allocator)),
|
|
C1(MatFactory("C1", batch_size, layer_config.ff_hidden_dim, allocator)),
|
|
C2(MatFactory("C2", batch_size, layer_config.ff_hidden_dim, allocator)),
|
|
ffw_out(MatFactory("ffw_out", batch_size, config.model_dim, allocator)),
|
|
|
|
attention(config, layer_config, batch_size, seq_len, allocator,
|
|
row_ptrs),
|
|
griffin(config, config.model == Model::GRIFFIN_2B ? batch_size : 0,
|
|
allocator) {
|
|
HWY_ASSERT(batch_size != 0);
|
|
|
|
// For MatMul outputs, precompute their row pointers.
|
|
// If we forget any MatMul outputs here, debug builds print a warning but
|
|
// fill them in each MatMul call.
|
|
x.AllocateAndAttachRowPtrs(row_ptrs);
|
|
logits.AllocateAndAttachRowPtrs(row_ptrs);
|
|
C1.AllocateAndAttachRowPtrs(row_ptrs);
|
|
C2.AllocateAndAttachRowPtrs(row_ptrs);
|
|
ffw_out.AllocateAndAttachRowPtrs(row_ptrs);
|
|
|
|
// Note that BindC on any MatMul output considerably slows down Prefill.
|
|
}
|
|
|
|
// Negligible CPU time.
|
|
void SetBatchSize(size_t batch_size) {
|
|
x.OverrideRows(batch_size);
|
|
logits.OverrideRows(batch_size);
|
|
|
|
pre_ffw_rms_out.OverrideRows(batch_size);
|
|
C1.OverrideRows(batch_size);
|
|
C2.OverrideRows(batch_size);
|
|
ffw_out.OverrideRows(batch_size);
|
|
|
|
attention.SetBatchSize(batch_size);
|
|
griffin.SetBatchSize(batch_size);
|
|
}
|
|
|
|
const LayerConfig& layer_config;
|
|
|
|
MatStorageT<float> x; // input
|
|
MatStorageT<float> logits;
|
|
|
|
// Gated FFW
|
|
MatStorageT<BF16> pre_ffw_rms_out;
|
|
// Norm may be large, so prefer to keep as f32.
|
|
MatStorageT<float> C1;
|
|
MatStorageT<float> C2;
|
|
MatStorageT<BF16> ffw_out;
|
|
|
|
AttentionActivations attention;
|
|
GriffinActivations griffin;
|
|
};
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_ACTIVATIONS_H_
|