mirror of https://github.com/google/gemma.cpp.git
297 lines
9.9 KiB
C++
297 lines
9.9 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Shared between various frontends.
|
|
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_UTIL_APP_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_UTIL_APP_H_
|
|
|
|
#include <memory>
|
|
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#if HWY_OS_LINUX
|
|
#include <sched.h>
|
|
#endif // HWY_OS_LINUX
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm> // std::clamp
|
|
#include <string>
|
|
#include <thread> // NOLINT>
|
|
#include <vector>
|
|
|
|
#include "compression/io.h" // Path
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "gemma/gemma.h"
|
|
#include "util/args.h"
|
|
#include "hwy/base.h" // HWY_ASSERT
|
|
#include "hwy/contrib/thread_pool/topology.h"
|
|
|
|
namespace gcpp {
|
|
|
|
static inline const char* CompiledConfig() {
|
|
if (HWY_IS_ASAN) {
|
|
return "asan";
|
|
} else if (HWY_IS_MSAN) {
|
|
return "msan";
|
|
} else if (HWY_IS_TSAN) {
|
|
return "tsan";
|
|
} else if (HWY_IS_HWASAN) {
|
|
return "hwasan";
|
|
} else if (HWY_IS_UBSAN) {
|
|
return "ubsan";
|
|
} else if (HWY_IS_DEBUG_BUILD) {
|
|
return "dbg";
|
|
} else {
|
|
return "opt";
|
|
}
|
|
}
|
|
|
|
static inline std::vector<size_t> LpsToCpus(
|
|
const hwy::LogicalProcessorSet& lps) {
|
|
std::vector<size_t> cpus;
|
|
cpus.reserve(lps.Count());
|
|
lps.Foreach([&cpus](size_t lp) { cpus.push_back(lp); });
|
|
return cpus;
|
|
}
|
|
|
|
static inline std::vector<size_t> AssignCpusFromTopology(
|
|
const hwy::Topology& topology, const size_t num_workers) {
|
|
// Assign CPUs to workers 0 to num_workers - 1 based on the topology.
|
|
// The assignments are done in a round-robin fashion across all clusters and
|
|
// Cores.
|
|
// For example, if we have 4 clusters, the assignments will be:
|
|
// Thread 0 -> Cluster 0, Core 0
|
|
// Thread 1 -> Cluster 1, Core 0
|
|
// Thread 2 -> Cluster 2, Core 0
|
|
// Thread 3 -> Cluster 3, Core 0
|
|
// Thread 4 -> Cluster 0, Core 1
|
|
// Thread 5 -> Cluster 1, Core 1
|
|
// ... and so on.
|
|
//
|
|
// This would result in the least amount of sharing of the last-level
|
|
// cache slices. All assignments are made from Package 0.
|
|
std::vector<std::vector<size_t>> clusters;
|
|
clusters.reserve(topology.packages[0].clusters.size());
|
|
for (auto& cluster : topology.packages[0].clusters) {
|
|
clusters.push_back(LpsToCpus(cluster.lps));
|
|
}
|
|
std::vector<size_t> assigned_cpus;
|
|
assigned_cpus.reserve(num_workers);
|
|
for (size_t i = 0; i < num_workers; ++i) {
|
|
size_t cluster_index = i % clusters.size();
|
|
size_t cpu_index = (i / clusters.size()) % clusters[cluster_index].size();
|
|
assigned_cpus.push_back(clusters[cluster_index][cpu_index]);
|
|
}
|
|
return assigned_cpus;
|
|
}
|
|
|
|
static inline void PinWorkersToCores(hwy::ThreadPool& pool) {
|
|
// Use topology to pin workers to cores if available.
|
|
hwy::Topology topology;
|
|
if (!topology.packages.empty()) {
|
|
std::vector<size_t> assigned_cpus =
|
|
AssignCpusFromTopology(topology, pool.NumWorkers());
|
|
pool.Run(0, pool.NumWorkers(),
|
|
[&assigned_cpus](uint64_t /*task*/, size_t thread) {
|
|
hwy::PinThreadToLogicalProcessor(assigned_cpus[thread]);
|
|
});
|
|
} else {
|
|
pool.Run(0, pool.NumWorkers(), [](uint64_t /*task*/, size_t thread) {
|
|
hwy::PinThreadToLogicalProcessor(thread);
|
|
});
|
|
}
|
|
}
|
|
|
|
class AppArgs : public ArgsBase<AppArgs> {
|
|
static constexpr size_t kDefaultNumThreads = ~size_t{0};
|
|
|
|
void ChooseNumThreads() {
|
|
if (num_threads == kDefaultNumThreads) {
|
|
// This is a rough heuristic, replace with something better in the future.
|
|
num_threads = GetSupportedThreadCount();
|
|
}
|
|
}
|
|
|
|
public:
|
|
AppArgs(int argc, char* argv[]) {
|
|
InitAndParse(argc, argv);
|
|
ChooseNumThreads();
|
|
}
|
|
|
|
static inline size_t GetSupportedThreadCount() {
|
|
return static_cast<size_t>(
|
|
std::clamp(static_cast<int>(std::thread::hardware_concurrency()) - 2, 1,
|
|
HWY_MIN(static_cast<int>(kMaxThreads), 18)));
|
|
}
|
|
|
|
Path log; // output
|
|
int verbosity;
|
|
size_t num_threads;
|
|
std::string eot_line;
|
|
|
|
template <class Visitor>
|
|
void ForEach(const Visitor& visitor) {
|
|
visitor(verbosity, "verbosity", 1,
|
|
"Show verbose developer information\n 0 = only print generation "
|
|
"output\n 1 = standard user-facing terminal ui\n 2 = show "
|
|
"developer/debug info).\n Default = 1.",
|
|
2);
|
|
visitor(num_threads, "num_threads",
|
|
kDefaultNumThreads, // see ChooseNumThreads
|
|
"Number of threads to use.\n Default = Estimate of the "
|
|
"number of suupported concurrent threads.",
|
|
2);
|
|
visitor(
|
|
eot_line, "eot_line", std::string(""),
|
|
"End of turn line. "
|
|
"When you specify this, the prompt will be all lines "
|
|
"before the line where only the given string appears.\n Default = "
|
|
"When a newline is encountered, that signals the end of the turn.",
|
|
2);
|
|
}
|
|
};
|
|
|
|
struct LoaderArgs : public ArgsBase<LoaderArgs> {
|
|
LoaderArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
|
|
|
|
// Returns error string or nullptr if OK.
|
|
const char* Validate() {
|
|
if (const char* err = ParseModelTypeAndTraining(model_type_str, model_type_,
|
|
model_training_)) {
|
|
return err;
|
|
}
|
|
if (const char* err = ParseType(weight_type_str, weight_type_)) {
|
|
return err;
|
|
}
|
|
if (tokenizer.path.empty()) {
|
|
return "Missing --tokenizer flag, a file for the tokenizer is required.";
|
|
}
|
|
if (!tokenizer.Exists()) {
|
|
return "Can't open file specified with --tokenizer flag.";
|
|
}
|
|
if (!compressed_weights.path.empty()) {
|
|
if (weights.path.empty()) {
|
|
weights = compressed_weights;
|
|
} else {
|
|
return "Only one of --weights and --compressed_weights can be "
|
|
"specified. To create compressed weights use the "
|
|
"compress_weights tool.";
|
|
}
|
|
}
|
|
if (weights.path.empty()) {
|
|
return "Missing --weights flag, a file for the model weights.";
|
|
}
|
|
if (!weights.Exists()) {
|
|
return "Can't open file specified with --weights flag.";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Path tokenizer;
|
|
Path weights; // weights file location
|
|
Path compressed_weights;
|
|
std::string model_type_str;
|
|
std::string weight_type_str;
|
|
|
|
template <class Visitor>
|
|
void ForEach(const Visitor& visitor) {
|
|
visitor(tokenizer, "tokenizer", Path(),
|
|
"Path name of tokenizer model file.\n Required argument.");
|
|
visitor(weights, "weights", Path(),
|
|
"Path name of model weights (.sbs) file.\n Required argument.");
|
|
visitor(compressed_weights, "compressed_weights", Path(),
|
|
"Alias for --weights.");
|
|
visitor(model_type_str, "model", std::string(),
|
|
"Model type\n 2b-it = 2B parameters, instruction-tuned\n "
|
|
"2b-pt = 2B parameters, pretrained\n 7b-it = 7B parameters "
|
|
"instruction-tuned\n 7b-pt = 7B parameters, pretrained\n "
|
|
"gr2b-it = griffin 2B parameters, instruction-tuned\n "
|
|
"gr2b-pt = griffin 2B parameters, pretrained\n "
|
|
" Required argument.");
|
|
visitor(weight_type_str, "weight_type", std::string("sfp"),
|
|
"Weight type\n f32 = float, bf16 = bfloat16, SFP = 8-bit FP\n"
|
|
" Required argument.");
|
|
}
|
|
|
|
// Uninitialized before Validate, must call after that.
|
|
gcpp::Model ModelType() const { return model_type_; }
|
|
gcpp::ModelTraining ModelTrainingType() const { return model_training_; }
|
|
gcpp::Type WeightType() const { return weight_type_; }
|
|
|
|
private:
|
|
Model model_type_;
|
|
ModelTraining model_training_;
|
|
Type weight_type_;
|
|
};
|
|
|
|
static inline Gemma CreateGemma(const LoaderArgs& loader,
|
|
hwy::ThreadPool& pool) {
|
|
return Gemma(loader.tokenizer, loader.weights, loader.ModelType(),
|
|
loader.WeightType(), pool);
|
|
}
|
|
|
|
static inline std::unique_ptr<Gemma> AllocateGemma(const LoaderArgs& loader,
|
|
hwy::ThreadPool& pool) {
|
|
return std::make_unique<Gemma>(loader.tokenizer, loader.weights,
|
|
loader.ModelType(), loader.WeightType(), pool);
|
|
}
|
|
|
|
struct InferenceArgs : public ArgsBase<InferenceArgs> {
|
|
InferenceArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
|
|
|
|
size_t max_tokens;
|
|
size_t max_generated_tokens;
|
|
|
|
float temperature;
|
|
bool deterministic;
|
|
bool multiturn;
|
|
|
|
// Returns error string or nullptr if OK.
|
|
const char* Validate() const {
|
|
if (max_tokens > gcpp::kSeqLen) {
|
|
return "max_tokens is larger than the maximum sequence length (see "
|
|
"configs.h).";
|
|
}
|
|
if (max_generated_tokens > max_tokens) {
|
|
return "Maximum number of generated tokens is larger than the maximum "
|
|
"total tokens.";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <class Visitor>
|
|
void ForEach(const Visitor& visitor) {
|
|
visitor(max_tokens, "max_tokens", size_t{3072},
|
|
"Maximum number of tokens in prompt + generation.");
|
|
visitor(max_generated_tokens, "max_generated_tokens", size_t{2048},
|
|
"Maximum number of tokens to generate.");
|
|
|
|
visitor(temperature, "temperature", 1.0f, "Temperature for top-K", 2);
|
|
visitor(deterministic, "deterministic", false,
|
|
"Make top-k sampling deterministic", 2);
|
|
visitor(multiturn, "multiturn", false,
|
|
"Multiturn mode\n 0 = clear KV cache after every "
|
|
"interaction\n 1 = continue KV cache after every interaction\n "
|
|
" Default : 0 (conversation "
|
|
"resets every turn)");
|
|
}
|
|
};
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_UTIL_APP_H_
|