mirror of https://github.com/google/gemma.cpp.git
191 lines
6.2 KiB
C++
191 lines
6.2 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Benchmark of large MatMul instances for which the MatMulSlow would be too
|
|
// slow. This lacks a reference and is only useful for performance measurement.
|
|
|
|
#include "hwy/base.h"
|
|
#ifndef HWY_DISABLED_TARGETS
|
|
// Exclude HWY_SCALAR due to 2x bf16 -> f32, and Armv7 NEON because we require
|
|
// double-precision support.
|
|
#if HWY_ARCH_ARM_V7
|
|
#define HWY_DISABLED_TARGETS (HWY_SCALAR | HWY_NEON)
|
|
#else
|
|
#define HWY_DISABLED_TARGETS HWY_SCALAR
|
|
#endif
|
|
#endif
|
|
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "compression/types.h"
|
|
#include "ops/matmul.h"
|
|
#include "util/basics.h"
|
|
#include "util/threading_context.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/nanobenchmark.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/timer.h"
|
|
|
|
// clang-format off
|
|
#undef HWY_TARGET_INCLUDE
|
|
#define HWY_TARGET_INCLUDE "ops/bench_matmul.cc" // NOLINT
|
|
// clang-format on
|
|
#include "hwy/foreach_target.h" // IWYU pragma: keep
|
|
#include "hwy/highway.h"
|
|
// After highway.h
|
|
#include "compression/compress-inl.h"
|
|
#include "compression/test_util-inl.h"
|
|
#include "ops/matmul-inl.h"
|
|
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace gcpp {
|
|
// For running BenchAllMatMul only once. Defined within HWY_ONCE.
|
|
extern int64_t first_target;
|
|
|
|
namespace HWY_NAMESPACE {
|
|
|
|
void PrintSpeed(const Extents2D& A_extents, const Extents2D& B_extents,
|
|
std::vector<double>& times, MMPerKey* per_key) {
|
|
std::sort(times.begin(), times.end());
|
|
// bench_dnn reports the best and average, but the median seems more
|
|
// consistent and resistant to outliers.
|
|
const double elapsed = times[times.size() / 2];
|
|
const double vs_best = elapsed / (times[0] + 1E-6); // avoid / 0
|
|
|
|
const size_t num_b = B_extents.Area();
|
|
const double flops = 2 * A_extents.rows * num_b / elapsed; // FMA = 2 ops
|
|
|
|
fprintf(stderr, "\t%.1f GFLOPS %.3f ms %0.2fx\n", flops * 1E-9, elapsed * 1E3,
|
|
vs_best);
|
|
}
|
|
|
|
// Generates inputs and prints observed throughput of MatMul.
|
|
// M = A rows, K = A cols, N = C cols.
|
|
template <typename TA, typename TB = TA, typename TC = float>
|
|
void BenchMatMul(size_t M, size_t K, size_t N, bool add, MatMulEnv& env) {
|
|
const Allocator& allocator = env.ctx.allocator;
|
|
hwy::ThreadPool& pool = env.ctx.pools.Pool(0);
|
|
if (env.print_config || env.print_measurement) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
fprintf(stderr,
|
|
"BenchMatMul %zu, %zu, %zu, add=%d, TA=%s, TB=%s, TC=%s\n", //
|
|
M, K, N, add, TypeName<TA>(), TypeName<TB>(), TypeName<TC>());
|
|
|
|
const Extents2D A_extents(M, K);
|
|
const Extents2D B_extents(N, K); // already transposed
|
|
const Extents2D C_extents(M, N);
|
|
|
|
MatStorageT<TC> c_slow_batch("c_slow_batch", C_extents, MatPadding::kOdd);
|
|
MatStorageT<TC> c_batch("c_batch", C_extents, MatPadding::kOdd);
|
|
|
|
MatStorageT<float> add_storage("add", Extents2D(), MatPadding::kPacked);
|
|
if (add) {
|
|
add_storage = GenerateMat<float>(Extents2D(1, N), pool);
|
|
add_storage.SetScale(1.0f);
|
|
}
|
|
|
|
MatStorageT<TA> a = GenerateMat<TA>(A_extents, pool);
|
|
MatStorageT<TB> b_trans = GenerateTransposedMat<TB>(B_extents, pool);
|
|
|
|
const float* add_row = add ? add_storage.PackedScale1() : nullptr;
|
|
const RowPtr<TC> C = RowPtrFromMat(c_batch);
|
|
|
|
// Fewer reps for large batch sizes, which take longer.
|
|
const size_t num_samples = M < 32 ? 20 : 12;
|
|
std::vector<double> times;
|
|
times.reserve(num_samples);
|
|
|
|
// Ensure usage conditions are set before autotuning. Both binding and
|
|
// spinning may materially affect the choice of config. No harm in calling
|
|
// BindB/C if there is a single package: they will be a no-op.
|
|
BindB(allocator, sizeof(TC), b_trans, env.parallel);
|
|
BindC(allocator, A_extents.rows, C, env.parallel);
|
|
|
|
Tristate use_spinning = Tristate::kDefault;
|
|
env.ctx.pools.MaybeStartSpinning(use_spinning);
|
|
|
|
// env.print_config = true;
|
|
// env.print_measurement = true;
|
|
env.print_best = true;
|
|
|
|
double keep = 0.0;
|
|
MMPerKey* per_key;
|
|
// Until enough samples collected *after* autotuning finished:
|
|
while (times.size() < num_samples) {
|
|
const double t0 = hwy::platform::Now();
|
|
per_key = MatMul(a, b_trans, add_row, env, C);
|
|
const double t1 = hwy::platform::Now();
|
|
double elapsed = t1 - t0;
|
|
keep += hwy::ConvertScalarTo<double>(C.Row(0)[hwy::Unpredictable1()]);
|
|
|
|
// Only record times after autotuning finished.
|
|
if (per_key->autotune.Best()) times.push_back(elapsed);
|
|
}
|
|
hwy::PreventElision(keep);
|
|
env.ctx.pools.MaybeStopSpinning(use_spinning);
|
|
PrintSpeed(A_extents, B_extents, times, per_key);
|
|
}
|
|
|
|
using F32 = float;
|
|
using SFP = SfpStream;
|
|
|
|
void BenchAllMatMul() {
|
|
if (first_target == 0) first_target = HWY_TARGET;
|
|
// Disable the best-target-only limitation.
|
|
// if (HWY_TARGET != first_target) return;
|
|
|
|
// Skip EMU128 (10x slower than SSE4 for SFP) and older x86.
|
|
if (HWY_TARGET == HWY_EMU128 || HWY_TARGET == HWY_SSSE3 ||
|
|
HWY_TARGET == HWY_SSE2 || HWY_TARGET == HWY_NEON_WITHOUT_AES) {
|
|
return;
|
|
}
|
|
|
|
ThreadingContext& ctx = ThreadingContext::Get();
|
|
fprintf(stderr, "BenchAllMatMul %s %s\n", ctx.topology.TopologyString(),
|
|
ctx.pools.PinString());
|
|
|
|
MatMulEnv env(ctx);
|
|
|
|
for (size_t batch_size : {1, 4, 128, 512}) {
|
|
constexpr bool kAdd = false;
|
|
BenchMatMul<BF16, SFP, BF16>(batch_size, 24576, 3072, kAdd, env);
|
|
BenchMatMul<BF16, SFP, BF16>(batch_size, 3072, 24576, kAdd, env);
|
|
}
|
|
|
|
PROFILER_PRINT_RESULTS();
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-readability-namespace-comments)
|
|
} // namespace HWY_NAMESPACE
|
|
} // namespace gcpp
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#if HWY_ONCE
|
|
|
|
namespace gcpp {
|
|
int64_t first_target = 0; // none run yet
|
|
HWY_BEFORE_TEST(BenchMatMul);
|
|
HWY_EXPORT_AND_TEST_P(BenchMatMul, BenchAllMatMul);
|
|
HWY_AFTER_TEST();
|
|
|
|
} // namespace gcpp
|
|
|
|
#endif
|