gemma.cpp/gemma/weights.cc

117 lines
3.5 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gemma/weights.h"
#include "gemma/common.h"
#include "gemma/configs.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
namespace gcpp {
ByteStorageT AllocateWeights(Model model, hwy::ThreadPool& pool) {
switch (model) {
case Model::GEMMA_2B:
return AllocateWeights<float, ConfigGemma2B>(pool);
case Model::GEMMA_7B:
return AllocateWeights<float, ConfigGemma7B>(pool);
case Model::GRIFFIN_2B:
return AllocateWeights<float, ConfigGriffin2B>(pool);
case Model::GEMMA_TINY:
return AllocateWeights<float, ConfigGemmaTiny>(pool);
default:
HWY_ABORT("Model type %d unknown.", static_cast<int>(model));
}
}
namespace {
template <typename TConfig>
void ZeroInitWeightsT(ByteStorageT& weights, hwy::ThreadPool& pool) {
ZeroInit<float, TConfig>(
*reinterpret_cast<Weights<float, TConfig>*>(weights.get()));
}
} // namespace
void ZeroInitWeights(Model model, ByteStorageT& weights,
hwy::ThreadPool& pool) {
switch (model) {
case Model::GEMMA_2B:
ZeroInitWeightsT<ConfigGemma2B>(weights, pool);
break;
case Model::GEMMA_7B:
ZeroInitWeightsT<ConfigGemma7B>(weights, pool);
break;
case Model::GRIFFIN_2B:
ZeroInitWeightsT<ConfigGriffin2B>(weights, pool);
break;
case Model::GEMMA_TINY:
ZeroInitWeightsT<ConfigGemmaTiny>(weights, pool);
break;
default:
HWY_ABORT("Model type %d unknown.", static_cast<int>(model));
}
}
namespace {
void LogVec(const char* name, const float* data, size_t len) {
float minval = std::numeric_limits<float>::max();
float maxval = std::numeric_limits<float>::min();
double sum = 0.0f;
for (size_t i = 0; i < len; ++i) {
minval = std::min(minval, data[i]);
maxval = std::max(maxval, data[i]);
sum += data[i];
}
float avg = sum / len;
printf("%-20s %12zu %13.10f %8.5f %13.10f\n",
name, len, minval, avg, maxval);
}
class WeightLogger {
public:
template <size_t N>
void operator()(const char* name, const std::array<float, N>& tensor) {
LogVec(name, tensor.data(), N);
total_weights += N;
}
size_t total_weights = 0;
};
template <typename TConfig>
void LogWeightStats(const ByteStorageT& weights_u8) {
const auto& weights = *reinterpret_cast<WeightsF<TConfig>*>(weights_u8.get());
WeightLogger logger;
ForEachTensor1<float, TConfig>(logger, weights);
printf("%-20s %12zu\n", "Total", logger.total_weights);
}
} // namespace
void LogWeightStats(gcpp::Model model, const ByteStorageT& weights) {
switch (model) {
case Model::GEMMA_2B:
return LogWeightStats<ConfigGemma2B>(weights);
case Model::GEMMA_7B:
return LogWeightStats<ConfigGemma7B>(weights);
case Model::GRIFFIN_2B:
return LogWeightStats<ConfigGriffin2B>(weights);
case Model::GEMMA_TINY:
return LogWeightStats<ConfigGemmaTiny>(weights);
default:
HWY_ABORT("Model type %d unknown.", static_cast<int>(model));
}
}
} // namespace gcpp