gemma.cpp/gemma/gemma.h

145 lines
5.0 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_H_
#include <functional>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "compression/io.h" // Path
#include "gemma/common.h"
#include "gemma/configs.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h" // hwy::bfloat16_t
#include "hwy/contrib/thread_pool/thread_pool.h"
namespace gcpp {
using GemmaWeightT = GEMMA_WEIGHT_T;
using EmbedderInputT = hwy::bfloat16_t;
// Will be called for layers output with:
// - position in the tokens sequence
// - name of the data, p.ex. "tokens", "block.1", "final_norm"
// - pointer to the data array
// - size of the data array
using LayersOutputT =
std::function<void(int, const std::string&, const float*, size_t)>;
constexpr size_t kPrefillBatchSize = 16;
constexpr bool kSystemPrompt = false;
struct KVCache {
hwy::AlignedFreeUniquePtr<float[]>
kv_cache; // kSeqLen * kGemmaLayers * kKVHeads * kQKVDim * 2
hwy::AlignedFreeUniquePtr<float[]>
conv1d_cache; // (kConv1dWidth - 1) * kModelDim * kGriffinLayers
hwy::AlignedFreeUniquePtr<float[]>
rglru_cache; // kModelDim * kGriffinLayers
};
enum class ModelTraining { GEMMA_IT, GEMMA_PT };
// Returns error string or nullptr if OK.
// Thread-hostile.
const char* ParseModelTypeAndTraining(const std::string& model_flag,
Model& model, ModelTraining& training);
// StreamFunc is called with (token, probability). For prompt tokens,
// probability is 0.0f. StreamFunc should return False to stop generation and
// True to continue generation.
using StreamFunc = std::function<bool(int, float)>;
// AcceptFunc is called with token. It should return False for tokens you don't
// want to generate and True for tokens you want to generate.
using AcceptFunc = std::function<bool(int)>;
constexpr int EOS_ID = 1;
struct RuntimeConfig {
size_t max_tokens;
size_t max_generated_tokens;
float temperature;
int verbosity;
std::mt19937* gen;
const StreamFunc& stream_token;
const AcceptFunc& accept_token;
int eos_id = EOS_ID;
};
struct GemmaInterface;
class GemmaTokenizer {
public:
virtual ~GemmaTokenizer() = default;
virtual bool Encode(const std::string& input,
std::vector<std::string>* pieces) const = 0;
virtual bool Encode(const std::string& input,
std::vector<int>* pieces) const = 0;
virtual bool Decode(const std::vector<int>& ids,
std::string* detokenized) const = 0;
};
struct Gemma {
Gemma(const Path& tokenizer_path, const Path& weights, Model model_type,
hwy::ThreadPool& pool);
~Gemma(); // must be defined after the GemmaInterface dtor is defined.
const GemmaTokenizer* Tokenizer() const;
std::unique_ptr<GemmaInterface> impl_;
};
struct TimingInfo {
double prefill_tok_sec = 0.0;
double gen_tok_sec = 0.0;
double time_to_first_token = 0;
};
KVCache CreateKVCache(Model type); // convenient workaround for now
KVCache CreateKVCache(size_t size_cache_pos, size_t seq_len,
size_t conv1d_cache_size, size_t rglru_cache_size);
// Bundle runtime parameters as RuntimeConfig
// layers_output is optional; if set - it will be called with the activations
// output after applying each layer.
void GenerateGemma(Gemma& gemma, const RuntimeConfig& runtime_config,
const std::vector<int>& prompt, size_t start_pos,
KVCache& kv_cache, hwy::ThreadPool& pool,
TimingInfo& timing_info,
LayersOutputT* layers_output = nullptr);
void GenerateGemma(Model model, const ByteStorageT& weights,
ByteStorageT& inference_state,
RuntimeConfig runtime_config,
const std::vector<int>& prompt, size_t start_pos,
KVCache& kv_cache, hwy::ThreadPool& pool,
TimingInfo& timing_info);
ByteStorageT LoadWeights(const Path& weights, Model model,
hwy::ThreadPool& pool);
ByteStorageT AllocateInferenceState(Model model);
void CompressWeights(gcpp::Model model, const Path& weights,
const Path& compressed_weights, hwy::ThreadPool& pool);
float ComputeCrossEntropy(Gemma& gemma, size_t max_tokens,
const std::vector<int>& prompt, KVCache& kv_cache,
hwy::ThreadPool& pool, int verbosity);
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_H_