gemma.cpp/ops/matmul.h

826 lines
30 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_H_
#define THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_H_
// Non-SIMD part of MatMul: parallelization, allocation, and autotuning.
#include <stddef.h>
#include <stdint.h>
#include <vector>
// IWYU pragma: begin_exports
#include "util/basics.h"
#include "util/mat.h"
#include "util/threading.h"
#include "util/threading_context.h"
#include "hwy/aligned_allocator.h" // Span
#include "hwy/base.h"
#include "hwy/bit_set.h"
#include "hwy/profiler.h"
// IWYU pragma: end_exports
namespace gcpp {
// The MatMul result C[r,c] is Dot(A.Row(r), B.Col(c)). To reduce the number of
// loads, we reuse the same A row for several B columns, which are also loaded
// once for several rows of C. Thus we produce one 'tile' of C at a time of
// dimensions `mr (<= kMaxMR)` x `kNR`. To keep FMA units busy, this should be
// at least the product of the FMA latency (3..5) times the throughput (2).
// This and `mr` are limited by the number of registers, which is generally
// 32 but 16 for AVX2. `kNR` == 4 enables the `StoreInterleaved4` transpose in
// `MMStoreHorizontalSumsIntoC`. We ensure `C.Cols() % kNR == 0`.
HWY_INLINE_VAR constexpr size_t kNR = 4;
// Choosing `kMaxMR == kNR` minimizes the ratio of loads to FMA, because
// we load `kNR + kMaxMR` vectors per `kMaxMR * kNR` element tile.
// In general, `M` (batch size) is not a multiple of `kMaxMR`. Thus functions
// that load or store a tile are parameterized on `kRowsAC`: usually `kMaxMR`,
// or less on ISAs with fewer registers, or for the last few rows of A.
HWY_INLINE_VAR constexpr size_t kMaxMR = 4;
// For `MMTilesC`.
HWY_INLINE_VAR constexpr size_t kMaxMC = 512;
HWY_INLINE_VAR constexpr size_t kMaxNC = 16384;
// Upper bound for per-worker B storage on the stack. Chosen such that one row
// of BF16 A and B fit in 32 KiB L1, but there may be `kMaxMR` and `kNR`.
HWY_INLINE_VAR constexpr size_t kMaxKC = 8 * 1024;
// Policy classes for parallelism, implementing some of `ParallelismStrategy`.
struct MMParallelNone {
template <class Func>
void ForN(ThreadingContext& ctx, const IndexRange& range_n,
size_t /*n_multiple*/, size_t inner_tasks, size_t cluster_idx,
const Func& func) const {
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
const size_t worker = ctx.Worker(cluster_idx);
func(range_n, worker);
}
template <class Func>
void ForRangesMC_NC(ThreadingContext& ctx,
const IndexRangePartition& ranges_mc,
const IndexRangePartition& ranges_nc, size_t cluster_idx,
const Func& func) const {
const size_t worker = ctx.Worker(cluster_idx);
for (size_t i = 0; i < ranges_mc.NumTasks(); ++i) {
const IndexRange range_mc = ranges_mc.Range(i);
for (size_t j = 0; j < ranges_nc.NumTasks(); ++j) {
const IndexRange range_nc = ranges_nc.Range(j);
func(range_mc, range_nc, worker);
}
}
}
template <class Func>
void ForRangeMC(ThreadingContext& ctx, const IndexRange& range_mc,
size_t cluster_idx, const Func& func) const {
const size_t worker = ctx.Worker(cluster_idx);
for (uint64_t row_a = range_mc.begin(); row_a < range_mc.end(); ++row_a) {
func(row_a, worker);
}
}
};
struct MMParallelWithinCluster {
template <class Func>
void ForN(ThreadingContext& ctx, const IndexRange& range_n, size_t n_multiple,
size_t inner_tasks, size_t cluster_idx, const Func& func) const {
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
const size_t base = ctx.Worker(cluster_idx);
const IndexRangePartition ranges_n = StaticPartition(
range_n, cluster.NumWorkers() * inner_tasks, n_multiple);
ParallelizeOneRange(ranges_n, cluster,
[&](const IndexRange& worker_range, size_t worker) {
func(worker_range, base + worker);
});
}
template <class Func>
void ForRangesMC_NC(ThreadingContext& ctx,
const IndexRangePartition& ranges_mc,
const IndexRangePartition& ranges_nc, size_t cluster_idx,
const Func& func) const {
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
const size_t base = ctx.Worker(cluster_idx);
// Low-batch: avoid Divide/Remainder.
if (HWY_UNLIKELY(ranges_mc.NumTasks() == 1)) {
ParallelizeOneRange(ranges_nc, cluster,
[&](const IndexRange& range_nc, size_t worker) {
func(ranges_mc.Range(0), range_nc, base + worker);
});
} else {
ParallelizeTwoRanges(
ranges_mc, ranges_nc, cluster,
[&](const IndexRange& range_mc, const IndexRange& range_nc,
size_t worker) { func(range_mc, range_nc, base + worker); });
}
}
template <class Func>
void ForRangeMC(ThreadingContext& ctx, const IndexRange& range_mc,
size_t cluster_idx, const Func& func) const {
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
const size_t base = ctx.Worker(cluster_idx);
cluster.Run(
range_mc.begin(), range_mc.end(),
[&](uint64_t row_a, size_t worker) { func(row_a, base + worker); });
}
};
struct MMParallelHierarchical {
// Cluster/CCX-aware parallel-for over B rows in `range_n`. `n_multiple` is
// the granularity of per-cluster tasks. Calls `func(worker_range, worker)`.
template <class Func>
void ForN(ThreadingContext& ctx, const IndexRange& range_n, size_t n_multiple,
size_t inner_tasks, HWY_MAYBE_UNUSED size_t caller_cluster_idx,
const Func& func) const {
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
HWY_DASSERT(caller_cluster_idx == 0);
// Single cluster: parallel-for over static partition of `range_n`.
hwy::ThreadPool& all_clusters = ctx.pools.AllClusters();
const size_t num_clusters = all_clusters.NumWorkers();
if (num_clusters == 1) {
const size_t cluster_idx = 0;
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
const IndexRangePartition ranges_n = StaticPartition(
range_n, cluster.NumWorkers() * inner_tasks, n_multiple);
return ParallelizeOneRange(
ranges_n, cluster,
[&](const IndexRange& worker_range, size_t worker) {
func(worker_range, worker);
});
}
// Assign each cluster a sub-range of `range_n` (typically hundreds).
const IndexRangePartition ranges_n =
StaticPartition(range_n, num_clusters, n_multiple);
ParallelizeOneRange(
ranges_n, all_clusters,
[&](const IndexRange& n_range, const size_t cluster_idx) {
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
const size_t cluster_base = ctx.Worker(cluster_idx);
// Parallel-for over sub-ranges of `cluster_range` within the cluster.
const IndexRangePartition worker_ranges = StaticPartition(
n_range, cluster.NumWorkers() * inner_tasks, n_multiple);
ParallelizeOneRange(
worker_ranges, cluster,
[&](const IndexRange& worker_range, size_t worker) {
func(worker_range, cluster_base + worker);
});
});
}
// Cluster/CCX-aware parallel-for over blocks (separate subranges of A and B
// rows). Calls `func(range_mc, range_nc, worker)`.
template <class Func>
void ForRangesMC_NC(ThreadingContext& ctx,
const IndexRangePartition& ranges_mc,
const IndexRangePartition& ranges_nc,
HWY_MAYBE_UNUSED size_t caller_cluster_idx,
const Func& func) const {
HWY_DASSERT(caller_cluster_idx == 0);
hwy::ThreadPool& all_clusters = ctx.pools.AllClusters();
// `all_clusters` is a pool with one worker per cluster in a package.
const size_t num_clusters = all_clusters.NumWorkers();
// Single (big) cluster: collapse two range indices into one parallel-for
// to reduce the number of fork-joins.
if (num_clusters == 1) {
const size_t cluster_idx = 0;
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
// Low-batch: avoid Divide/Remainder.
if (HWY_UNLIKELY(ranges_mc.NumTasks() == 1)) {
return ParallelizeOneRange(
ranges_nc, cluster, [&](const IndexRange& range_nc, size_t worker) {
func(ranges_mc.Range(0), range_nc, worker);
});
} else {
return ParallelizeTwoRanges(
ranges_mc, ranges_nc, cluster,
[&](const IndexRange& range_mc, const IndexRange& range_nc,
size_t worker) { func(range_mc, range_nc, worker); });
}
}
// Multiple clusters: N across clusters (both are usually the larger), and
// M within each cluster. We assume auto-tuning finds small MC/NC tasks.
ParallelizeOneRange(
ranges_nc, all_clusters,
[&](const IndexRange range_nc, size_t cluster_idx) {
const size_t cluster_base = ctx.Worker(cluster_idx);
hwy::ThreadPool& cluster = ctx.pools.Cluster(cluster_idx);
ParallelizeOneRange(ranges_mc, cluster,
[&](const IndexRange& range_mc, size_t worker) {
func(range_mc, range_nc, cluster_base + worker);
});
});
}
// Calls `func(row_a, worker)` in parallel.
template <class Func>
void ForRangeMC(ThreadingContext& ctx, const IndexRange& range_mc,
size_t caller_cluster_idx, const Func& func) const {
HierarchicalParallelFor(range_mc.Num(), ctx.pools,
[&](size_t task, size_t worker) {
func(range_mc.begin() + task, worker);
});
}
};
template <class Func, typename... Args>
void DispatchParallelism(ParallelismStrategy parallelism, const Func& func,
Args&&... args) {
switch (parallelism) {
case ParallelismStrategy::kNone:
return func(MMParallelNone(), std::forward<Args>(args)...);
case ParallelismStrategy::kWithinCluster:
return func(MMParallelWithinCluster(), std::forward<Args>(args)...);
case ParallelismStrategy::kHierarchical:
return func(MMParallelHierarchical(), std::forward<Args>(args)...);
default:
HWY_UNREACHABLE;
}
}
void BindB(ThreadingContext& ctx, MatPtr& B, size_t sizeof_TC);
// C is BF16/float.
void BindC(ThreadingContext& ctx, MatPtr& C);
// Space for converting A=F32 to BF16 before the matmul. This is faster than
// on-the-fly when native BF16 is available: it only happens once, not per B
// tile row, and the cache footprint is smaller.
class MMEntireA {
public:
// Compile-time bounds on matrix columns to enable pre-allocating storage
// and reusing it across `MatMul` calls. Sufficient for Gemma 2 27B.
static constexpr size_t kMaxK = 36 * 1024;
explicit MMEntireA(const Allocator& allocator)
// 288 MiB. Must be padded, see `DoDecompressA`.
: A_("A_bf", Extents2D(kMaxBatchSize, kMaxK), allocator,
MatPadding::kOdd) {}
StridedViewBF A(const Extents2D& extents) const {
HWY_DASSERT(extents.rows <= kMaxBatchSize);
return StridedViewBF(A_, 0, 0, extents.cols);
}
private:
MatStorageT<BF16> A_;
};
// One tile of C per *worker* (required for `kNT_MT*`).
class MMTilesC {
public:
explicit MMTilesC(const ThreadingContext& ctx) {
const size_t max_workers = ctx.pools.MaxWorkers();
C_.reserve(max_workers);
for (size_t worker = 0; worker < max_workers; ++worker) {
C_.push_back(MatStorageT<BF16>("Ctile", Extents2D(kMaxBatchSize, kMaxNC),
ctx.allocator, MatPadding::kOdd));
}
}
StridedViewBF C(const Extents2D& extents, size_t worker) const {
HWY_DASSERT(extents.rows <= kMaxBatchSize);
HWY_DASSERT(worker < C_.size());
return StridedViewBF(C_[worker], 0, 0, extents.cols);
}
private:
std::vector<MatStorageT<BF16>> C_;
};
//------------------------------------------------------------------------------
// Autotuning
// Naming convention: outer loop first, T suffix means threaded. This refers to
// the loops *around* `A2C0`, which contains loops over mc/kc.
//
// Parallelizing across K (A/B columns) is undesirable because the resulting
// partial dot products require synchronization or reduction across threads.
enum class MMOrder : uint8_t {
// Single M, parallel N, sequential K (inside the parallel section to
// reduce fork-joins). Similar to GotoBLAS, good for large N vs. M and K.
kNT_K,
// Specialization of `kNT_K` for a single K task with `MMSetC`.
kNT,
// Parallelize over blocks of M and N: good when both are large. We no longer
// support `kMT_NT_K`: no advantage on Skylake, and `kNT_MT_K` is 1.5x as
// fast on Zen4.
kNT_MT_K,
kNT_MT, // Specialization of `kNT_MT_K` for a single K task with `MMSetC`.
// Resident C (`kK_M_NT`) should be good for large K relative to M and N.
// However, it does not (much) outperform `kNT_K` on SKX and Zen4. There are
// no kM* because we expect M (batch size) to be small relative to K and N.
};
// Tag types for `DispatchOrder`.
struct MMOrderNT_K {};
struct MMOrderNT {};
struct MMOrderNT_MT_K {};
struct MMOrderNT_MT {};
template <class Func, typename... Args>
void DispatchOrder(MMOrder order, const Func& func, Args&&... args) {
switch (order) {
case MMOrder::kNT_K:
return func(MMOrderNT_K(), std::forward<Args>(args)...);
case MMOrder::kNT:
return func(MMOrderNT(), std::forward<Args>(args)...);
case MMOrder::kNT_MT_K:
return func(MMOrderNT_MT_K(), std::forward<Args>(args)...);
case MMOrder::kNT_MT:
return func(MMOrderNT_MT(), std::forward<Args>(args)...);
default:
HWY_UNREACHABLE;
}
}
static inline bool IsBlock(MMOrder order) {
return order == MMOrder::kNT_MT_K || order == MMOrder::kNT_MT;
}
static inline bool IsOneKC(MMOrder order) {
return order == MMOrder::kNT || order == MMOrder::kNT_MT;
}
static inline const char* StringFromOrder(MMOrder order) {
switch (order) {
case MMOrder::kNT_K:
return "NT_K";
case MMOrder::kNT:
return "NT";
case MMOrder::kNT_MT_K:
return "NT_MT_K";
case MMOrder::kNT_MT:
return "NT_MT";
default:
return nullptr;
}
}
// How to parallelize the per-package `DecompressA`. To reduce combinatorial
// explosion, we tune this separately from `MMConfig`.
enum class MMParA : uint8_t { kNone, kK1 = 1, kK2 = 2, kK4 = 4, kM };
static inline const char* StringFromParA(MMParA par_a) {
switch (par_a) {
case MMParA::kNone:
return "ParA0 ";
case MMParA::kK1:
return "ParAK1";
case MMParA::kK2:
return "ParAK2";
case MMParA::kK4:
return "ParAK4";
case MMParA::kM:
return "ParAM ";
default:
return nullptr;
}
}
// Possible configurations for the autotuner to choose from:
// `mr` := C rows to write at a time (< #registers / `kNR`),
// `kc` := A / B columns such that `mr` rows fit in L1,
// `mc` := A rows such that `kc` columns fit in L2,
// `nc` := B rows such that `kc` columns fit in L3 alongside `mc x nc` C.
// Also includes loop order and task granularity.
#pragma pack(push, 1)
class MMConfig {
public:
MMConfig() = default; // for std::vector
// `mr` is the number of A rows per call to `MMKernel::LoopKC`.
// `MMOrder` is how to parallelize the outer loops.
// `inner_tasks` chooses the within-cluster task granularity in `ForN`.
MMConfig(size_t K, size_t N, size_t mr, size_t mc, size_t kc, size_t nc,
size_t kc_multiple, size_t nc_multiple, MMOrder order,
int inner_tasks)
: mr_(static_cast<uint32_t>(mr)),
mc_(static_cast<uint32_t>(mc)),
kc_(static_cast<uint32_t>(kc)),
nc_(static_cast<uint32_t>(nc)),
nc_multiple_(static_cast<uint32_t>(nc_multiple)),
kc_multiple_(static_cast<uint32_t>(kc_multiple)),
order_(order),
inner_tasks_(static_cast<uint8_t>(inner_tasks)),
reserved_{} {
HWY_DASSERT(mr == 1 || mr == 2 || mr == 4);
if (mc % mr != 0) {
HWY_WARN("mc %zu not a multiple of mr %zu", mc, mr);
}
// Do not warn for single-kc tasks; some models unfortunately have K which
// are not multiples of `kc_multiple`.
if (kc != K && (kc % kc_multiple) != 0) {
HWY_WARN("kc %zu not a multiple of kc_multiple %zu", kc, kc_multiple);
}
if (nc != N && (nc % nc_multiple) != 0) {
HWY_WARN("nc %zu not a multiple of nc_multiple %zu", nc, nc_multiple);
}
HWY_DASSERT(StringFromOrder(order_) != nullptr);
HWY_DASSERT(1 <= inner_tasks && inner_tasks <= 4);
}
// Splits M/N into blocks which are visited sequentially or in parallel.
// K is always sequential, see `MMOrder`.
IndexRangePartition RangesOfMC(size_t M) const {
return MaxSizePartition(IndexRange(0, M), mc_, mr_);
}
IndexRangePartition RangesOfKC(size_t K) const {
return MaxSizePartition(IndexRange(0, K), kc_, kc_multiple_);
}
IndexRangePartition RangesOfNC(size_t N) const {
return MaxSizePartition(IndexRange(0, N), nc_, nc_multiple_);
}
MMOrder Order() const { return order_; }
// No `OuterTasks` because static partitioning across clusters is sufficient.
size_t InnerTasks() const { return static_cast<size_t>(inner_tasks_); }
// Accessors for printing autotune result.
size_t MR() const { return static_cast<size_t>(mr_); }
size_t MC() const { return static_cast<size_t>(mc_); }
size_t KC() const { return static_cast<size_t>(kc_); }
size_t NC() const { return static_cast<size_t>(nc_); }
private:
// Somewhat-compressed representation because MMCandidates may return dozens.
uint32_t mr_;
uint32_t mc_;
uint32_t kc_;
uint32_t nc_;
uint32_t nc_multiple_;
uint32_t kc_multiple_;
MMOrder order_;
uint8_t inner_tasks_;
HWY_MAYBE_UNUSED uint8_t reserved_[6];
};
static_assert(sizeof(MMConfig) == 32); // for faster indexing
#pragma pack(pop)
std::vector<MMConfig> MMCandidates(const CacheInfo& cache, size_t M, size_t K,
size_t N, size_t num_B, size_t sizeof_TC,
bool print_config);
// State machine for choosing the best `TConfig`, which is `MMConfig` for the
// main MatMul autotuner.
// TODO: replace with hwy/auto_tune.h.
template <typename TConfig>
class MMAutoTune {
public:
// Returns nullptr if not yet finished, otherwise the best config. Do not
// store this pointer because it can be invalidated.
const TConfig* Best() const { return best_; }
// If false, caller must call `SetCandidates` before `NextConfig`.
bool HasCandidates() const {
HWY_DASSERT(!Best());
return !candidates_.empty();
}
void SetCandidates(std::vector<TConfig> candidates) {
HWY_DASSERT(!HasCandidates());
candidates_.swap(candidates);
HWY_DASSERT(HasCandidates());
min_ticks_.resize(candidates_.size(), ~uint64_t{0});
}
// Returns the current `TConfig` to measure.
const TConfig& NextConfig() const {
HWY_DASSERT(!Best() && HasCandidates());
return candidates_[config_idx_];
}
// Returns the best ticks so far for this candidate. Negligible CPU time.
uint64_t NotifyTicks(uint64_t ticks) {
HWY_DASSERT(HasCandidates());
HWY_DASSERT(!skipped_.Get(config_idx_));
best_ticks_ = HWY_MIN(best_ticks_, ticks);
min_ticks_[config_idx_] = HWY_MIN(min_ticks_[config_idx_], ticks);
// Best so far. Save because we update `config_idx_` below.
const size_t my_best_ticks = min_ticks_[config_idx_];
const size_t my_idx = config_idx_;
// Advance/wrap around to next non-skipped config. Do this first because it
// updates `rounds_complete_`. To decorrelate measurements, we do not
// immediately re-measure the same config.
for (;;) {
++config_idx_;
if (HWY_UNLIKELY(config_idx_ == candidates_.size())) {
config_idx_ = 0;
++rounds_complete_;
}
// Guaranteed to terminate because `best_ticks_` is never worse than any
// other, hence is not skipped.
if (!skipped_.Get(config_idx_)) break;
}
// Disqualify from future `NextConfig` if the best of two measurements so
// far is sufficiently worse than `best_ticks_`. This tolerates some noise
// in the first or second measurement.
if (rounds_complete_ != 0 && my_best_ticks > 5 * best_ticks_ / 4) {
skipped_.Set(my_idx);
}
// After sufficient rounds, choose the winner.
if (rounds_complete_ == 4) {
for (size_t i = 0; i < candidates_.size(); ++i) {
worst_min_ticks_ = HWY_MAX(worst_min_ticks_, min_ticks_[i]);
if (min_ticks_[i] == best_ticks_) {
// Causes `Best()` to be non-null, hence `MatMul` will no longer call
// `NextConfig` for this shape.
best_ = &candidates_[i];
config_idx_ = i; // just in case callers want to know which index.
}
}
HWY_DASSERT(best_ != nullptr); // no min_ticks_ matches best_ticks_
}
return my_best_ticks;
}
// Avoid printing the first two rounds, because those might be noisy and not
// yet skipped.
bool ShouldPrint() { return rounds_complete_ > 2; }
// Only valid after Best() is non-null. Used to compute the autotuning gain.
uint64_t BestTicks() const { return best_ticks_; }
uint64_t WorstMinTicks() const { return worst_min_ticks_; }
uint64_t FirstConfigTicks() const { return min_ticks_[0]; }
private:
const TConfig* best_ = nullptr;
std::vector<TConfig> candidates_;
// Use Min because threads are pinned, so we only expect additive noise.
std::vector<uint64_t> min_ticks_; // one per candidate
size_t config_idx_ = 0; // [0, candidates_.size())
size_t rounds_complete_ = 0;
uint64_t best_ticks_ = ~uint64_t{0};
uint64_t worst_min_ticks_ = 0;
hwy::BitSet4096<> skipped_;
};
//------------------------------------------------------------------------------
// Minimum M, in units of tile rows of height mr={1, 2, 4}, from which
// `MMOrder::kNT[_K]` are no longer allowed. They require a single MC range,
// but choosing the same config for a larger M can result in multiple MC ranges.
// Thus M less than this must have unique keys/configs.
HWY_INLINE_VAR constexpr size_t kMaxTilesM = 8;
// Map of previously seen dimensions to index via linear search.
class MMKeys {
// Group batch size into buckets to reduce #auto-tunes.
static size_t BucketM(size_t M) {
if (M < kMaxTilesM * kMaxMR) return M; // See kMaxTilesM above.
if (M <= 128) return 128;
return 512;
}
public:
using Key = uint64_t;
// KeyFromDims will only return this if all dims are zero, which is invalid.
static constexpr Key kPadding = 0;
// Compresses the dimensions into a single Key for faster comparison.
static Key KeyFromDims(size_t M, size_t K, size_t N, size_t num_B) {
HWY_DASSERT(M < (Key{1} << 16)); // batch sizes are smaller
HWY_DASSERT(K < (Key{1} << 20));
HWY_DASSERT(N < (Key{1} << 20));
HWY_DASSERT(num_B == 1 || num_B == 2);
const Key key = static_cast<Key>(BucketM(M)) | (static_cast<Key>(K) << 16) |
(static_cast<Key>(N) << 40) |
(static_cast<Key>(num_B) << 60);
HWY_DASSERT(key != kPadding);
return key;
}
// We leave the search to callers so they can use per-target SIMD, which is
// not possible in this header.
hwy::Span<const Key> Keys() const {
return hwy::Span<const Key>(keys_.get(), num_unique_);
}
// Must only be called if not already present in `Keys()`.
void Append(Key key, size_t vector_bytes) {
// Dynamic allocation because the test checks many more dimensions than
// would be reasonable to pre-allocate. DIY for alignment and padding.
if (HWY_UNLIKELY(num_unique_ >= capacity_)) {
const size_t NU64 = vector_bytes / sizeof(Key);
// Start at one vector so the size is always a multiple of N.
if (HWY_UNLIKELY(capacity_ == 0)) {
capacity_ = hwy::DivCeil(NU64, 2); // will be doubled below
}
capacity_ *= 2;
HWY_DASSERT(capacity_ >= num_unique_ + 1);
hwy::AlignedFreeUniquePtr<Key[]> new_keys =
hwy::AllocateAligned<Key>(capacity_);
hwy::CopyBytes(keys_.get(), new_keys.get(), num_unique_ * sizeof(Key));
// Pad for SIMD.
for (size_t i = num_unique_; i < hwy::RoundUpTo(num_unique_, NU64); ++i) {
new_keys[i] = kPadding;
}
keys_.swap(new_keys);
}
keys_[num_unique_++] = key;
}
private:
size_t capacity_ = 0;
size_t num_unique_ = 0;
hwy::AlignedFreeUniquePtr<Key[]> keys_;
};
// Per-MatMul-shape state.
struct MMPerKey {
MMAutoTune<MMConfig> autotune;
MMAutoTune<MMParA> autotune_par_a;
};
// Stores state shared across MatMul calls. Non-copyable. `ctx` must outlive
// `MatMulEnv`.
struct MatMulEnv {
explicit MatMulEnv(ThreadingContext& ctx);
ThreadingContext& ctx;
bool have_timer_stop = false;
// Whether `MMCandidates()` should print the set of parameters.
bool print_config = false;
// Whether to print each config's speed during autotuning.
bool print_measurement = false;
// Whether to print the best config immediately after autotuning finished.
bool print_best = false;
MMEntireA A_BF;
MMTilesC C_tiles;
struct PerCluster {
MMKeys keys;
std::vector<MMPerKey> per_key;
// Prevents false sharing.
HWY_MAYBE_UNUSED uint8_t
padding[HWY_ALIGNMENT - sizeof(MMKeys) - sizeof(per_key)];
};
std::vector<PerCluster> per_cluster;
// Storage for arbitrary output rows, see `MatPtr::AllocateAndAttachRowPtrs`.
// Most MatMul callers use strided MatPtr, but GemmaAttention::ComputeQKV
// writes to differing KV positions per query / output row.
// The first `num_clusters` entries are sufficient for any C argument, and
// must be indexed by `options.cluster_idx`. Note that they are potentially
// overwritten by each `MatMul`. Subsequent entries are for specific tensors
// and only written once by their allocator. A per-tensor allocation makes it
// likelier that asan detects bugs such as use after free, overrun, and
// dangling references.
std::vector<hwy::AlignedFreeUniquePtr<uint8_t*[]>> row_ptrs;
};
// Called via `CallClosure`, which consumes the first (opaque) argument. User
// functions are called with the entire C matrix, the sub-ranges of M (rows)
// and N (cols) that this thread has just filled, a view into a second tile
// (only for `TwoMatmul`), and the worker thread index (see `ParallelFor`).
typedef void (*MMFunc)(const void* opaque, RowPtrsBF, IndexRange, IndexRange,
StridedViewBF, size_t);
class MMOptions {
// Same technique as in `hwy::ThreadPool` and C++23 `std::function_ref`:
// type-erasure without allocation.
template <class Closure>
static void CallClosure(const void* opaque, RowPtrsBF C1, IndexRange range_r,
IndexRange range_c, StridedViewBF C2, size_t worker) {
(*reinterpret_cast<const Closure*>(opaque))(C1, range_r, range_c, C2,
worker);
}
public:
// `closure` must remain alive until the end of (Two)MatMul.
template <class Closure>
void SetFunc(const Closure& closure) {
func = static_cast<MMFunc>(&CallClosure<Closure>);
opaque = &closure;
}
void MaybeCallFunc(RowPtrsBF C1, IndexRange range_r, IndexRange range_c,
StridedViewBF C2, size_t worker) const {
if (func != nullptr) {
func(opaque, C1, range_r, range_c, C2, worker);
}
}
MMFunc func = nullptr; // called if non-null and `TC` is BF16.
const void* opaque = nullptr;
uint32_t cluster_idx = 0; // for `parallelism == kWithinCluster`.
ParallelismStrategy parallelism = ParallelismStrategy::kHierarchical;
};
// Arguments to MatMul() that are independent of the A/B/C types. Reduces
// register pressure compared to individual values/references. Also used for
// passing through `DispatchOrder`.
struct MMArgs {
MMArgs(MatMulEnv& env, size_t M, size_t K, size_t N, float scale_A,
const float* HWY_RESTRICT add, MMOptions options,
const MMAutoTune<MMConfig>& autotune, const MMConfig& config)
: env(env),
line_bytes(env.ctx.cache_info.LineBytes()),
range_n(0, N),
scale_A(scale_A),
add(add),
options(options),
autotune(autotune),
mr(config.MR()),
ranges_mc(config.RangesOfMC(M)),
ranges_kc(config.RangesOfKC(K)),
ranges_nc(config.RangesOfNC(N)),
order(config.Order()),
inner_tasks(config.InnerTasks()) {}
MatMulEnv& env;
const size_t line_bytes; // from `env`, for `Stride`.
// MatMul arguments:
const IndexRange range_n; // entire N
// There can be two B, so do not yet multiply together the A and B scales.
const float scale_A;
const float* HWY_RESTRICT add;
const MMOptions options;
const MMAutoTune<MMConfig>& autotune; // for `MaybeEnter`
// From `MMConfig`:
const size_t mr;
const IndexRangePartition ranges_mc;
const IndexRangePartition ranges_kc;
const IndexRangePartition ranges_nc;
const MMOrder order;
const size_t inner_tasks;
};
// Wrapper over hwy::Zone that is only enabled when autotuning finished.
#if PROFILER_ENABLED
class MMZone {
using Zone = hwy::profiler::Zone;
static_assert(alignof(Zone) <= 8 && sizeof(Zone) <= 16);
public:
~MMZone() {
if (data_ != 0) {
Zone* zone = reinterpret_cast<Zone*>(&data_);
zone->~Zone();
}
}
template <class AutoTune>
void MaybeEnter(size_t thread, hwy::profiler::ZoneHandle zone,
const MatMulEnv& env, const AutoTune* auto_tune) {
// Only if enabled and autotuning finished.
if (PROFILER_ENABLED && auto_tune->Best()) {
new (&data_) Zone(env.ctx.profiler, thread, zone);
HWY_DASSERT(data_ != 0);
}
}
private:
uint64_t data_ = 0;
uint64_t data2_ = 0;
};
#else
struct MMZone {
void MaybeEnter(size_t, hwy::profiler::ZoneHandle, const MatMulEnv&,
const void*) {}
};
#endif // PROFILER_ENABLED
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_H_