mirror of https://github.com/google/gemma.cpp.git
855 lines
32 KiB
C++
855 lines
32 KiB
C++
// Copyright 2024 Google LLC
|
||
// SPDX-License-Identifier: Apache-2.0
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// https://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
// Include guard for non-SIMD code.
|
||
#ifndef THIRD_PARTY_GEMMA_CPP_OPS_OPS_INL_H_
|
||
#define THIRD_PARTY_GEMMA_CPP_OPS_OPS_INL_H_
|
||
|
||
#include <math.h>
|
||
#include <stddef.h>
|
||
#include <stdio.h>
|
||
|
||
#include <cmath>
|
||
#include <cstdint>
|
||
#include <random>
|
||
#include <type_traits> // std::enable_if_t
|
||
#include <vector>
|
||
|
||
#include "util/allocator.h"
|
||
#include "util/basics.h" // TokenAndProb
|
||
#include "util/mat.h"
|
||
#include "util/threading_context.h"
|
||
#include "hwy/base.h"
|
||
#include "hwy/contrib/sort/order.h"
|
||
#include "hwy/contrib/sort/vqsort.h"
|
||
#include "hwy/detect_targets.h"
|
||
#include "hwy/profiler.h"
|
||
#endif // THIRD_PARTY_GEMMA_CPP_OPS_OPS_INL_H_
|
||
|
||
// Include guard for (potentially) SIMD code.
|
||
#if defined(THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE) == defined(HWY_TARGET_TOGGLE)
|
||
#ifdef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
|
||
#undef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
|
||
#else
|
||
#define THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
|
||
#endif
|
||
|
||
#include "compression/compress-inl.h"
|
||
#include "ops/dot-inl.h"
|
||
#include "ops/sum-inl.h"
|
||
#include "hwy/contrib/algo/transform-inl.h"
|
||
#include "hwy/contrib/math/math-inl.h"
|
||
|
||
HWY_BEFORE_NAMESPACE();
|
||
namespace gcpp {
|
||
namespace HWY_NAMESPACE {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
|
||
HWY_INLINE double PackTokenAndProb(int32_t token, float prob) {
|
||
// casting prob from float to double just makes some changes to the
|
||
// exponent bias and pads zeros in the mantissa.
|
||
double packed = static_cast<double>(prob);
|
||
int64_t packed_int64;
|
||
hwy::CopySameSize(&packed, &packed_int64);
|
||
// stuff the token into the lower 32 bits of packed_int64. (it is an int32_t
|
||
// anyway)
|
||
packed_int64 &= 0xFFFFFFFF00000000;
|
||
packed_int64 |= token;
|
||
// copy bytes back into packed.
|
||
hwy::CopySameSize(&packed_int64, &packed);
|
||
return packed;
|
||
}
|
||
|
||
HWY_INLINE TokenAndProb UnpackTokenAndProb(double packed) {
|
||
TokenAndProb tp;
|
||
|
||
int64_t packed_int64;
|
||
hwy::CopySameSize(&packed, &packed_int64);
|
||
tp.token = static_cast<int>(packed_int64 & 0xFFFFFFFFULL);
|
||
|
||
// clear the lower 32 bits of packed_int64 before copying back into packed.
|
||
packed_int64 &= 0xFFFFFFFF00000000ULL;
|
||
hwy::CopySameSize(&packed_int64, &packed);
|
||
tp.prob = static_cast<float>(packed);
|
||
return tp;
|
||
}
|
||
|
||
template <typename To, typename From>
|
||
HWY_INLINE constexpr std::enable_if_t<
|
||
std::is_arithmetic_v<To> && std::is_arithmetic_v<From>, To>
|
||
StaticCast(From from) noexcept {
|
||
if constexpr (std::is_unsigned_v<From> && std::is_floating_point_v<To>) {
|
||
return static_cast<To>(
|
||
static_cast<hwy::SignedFromSize<sizeof(From)>>(from));
|
||
} else {
|
||
return static_cast<To>(from);
|
||
}
|
||
}
|
||
|
||
// We use the tanh approximation for gelu (also used in training).
|
||
// gelu(x) = 0.5 * x * (1 + tanh(sqrt(2/π) * (x + 0.044715 * x^3)))
|
||
// = 0.5 * x * (1 + tanh(x * (sqrt(2/π) + sqrt(2/π) * 0.044715 * x^2)))
|
||
// = 0.5 * x * (1 + tanh(x * (0.79788 + 0.035677 * x^2)))
|
||
// = x * (0.5 + 0.5 * tanh(x * (0.79788 + 0.035677 * x^2))))
|
||
template <class D, HWY_IF_F32_D(D)>
|
||
HWY_INLINE hn::Vec<D> Gelu(D d, hn::Vec<D> v) {
|
||
const hn::Vec<D> kMul = hn::Set(d, 0.03567740813636141f);
|
||
const hn::Vec<D> kSqrt2OverPi = hn::Set(d, 0.797884560804236f);
|
||
const hn::Vec<D> kHalf = hn::Set(d, 0.5f);
|
||
|
||
const hn::Vec<D> v2 = hn::Mul(v, v);
|
||
const hn::Vec<D> arg = hn::Mul(v, hn::MulAdd(kMul, v2, kSqrt2OverPi));
|
||
const hn::Vec<D> cdf = hn::MulAdd(kHalf, hn::Tanh(d, arg), kHalf);
|
||
return hn::Mul(v, cdf);
|
||
}
|
||
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void Gelu(float* HWY_RESTRICT x,
|
||
size_t size) {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
hn::Transform(D(), x, size,
|
||
[](D d, hn::Vec<D> v) HWY_ATTR { return Gelu(d, v); });
|
||
}
|
||
|
||
template <class D, HWY_IF_F32_D(D)>
|
||
HWY_INLINE hn::Vec<D> Sigmoid(D d, hn::Vec<D> v) {
|
||
using VF = hn::Vec<D>;
|
||
// Chebyshev polynomial coefficients for rational approximation
|
||
const VF c0 = hn::Set(d, 0.00949107017368078f);
|
||
const VF c1 = hn::Set(d, 0.0654858946800232f);
|
||
const VF c2 = hn::Set(d, 0.231547489762306f - 0.00949107017368078f);
|
||
const VF c3 = hn::Set(d, 0.530778527259827f);
|
||
const VF c4 = hn::Set(d, 0.855334937572479f);
|
||
const VF c5 = hn::Set(d, 0.500000894069672f);
|
||
|
||
const VF d0 = hn::Set(d, 0.130970627069473f);
|
||
const VF d1 = hn::Set(d, 3.99615288415589e-07f);
|
||
const VF d2 = hn::Set(d, 1.06155431270599f - 0.130970627069473f);
|
||
const VF d3 = hn::Set(d, 1.35144250634767e-06f);
|
||
const VF d4 = hn::Set(d, 1);
|
||
|
||
// The approximation works in range -12..12, but the input value is clamped
|
||
// in -11.5..11.5 since the approximation slightly overshoots after that.
|
||
// The function is nearly 0 for input values below -11.5 and nearly 1 for
|
||
// input values above 11.5.
|
||
const VF invtwelve = hn::Set(d, 1.0f / 12.0f);
|
||
const VF lo = hn::Set(d, -11.5f);
|
||
const VF hi = hn::Set(d, 11.5f);
|
||
|
||
VF f = hn::Clamp(v, lo, hi);
|
||
f = hn::Mul(f, invtwelve);
|
||
VF f2 = hn::Add(f, f);
|
||
|
||
VF a1 = hn::MulAdd(f2, c0, c1);
|
||
VF a2 = hn::MulAdd(f2, a1, c2);
|
||
VF a3 = hn::Sub(hn::MulAdd(f2, a2, c3), a1);
|
||
VF a4 = hn::Sub(hn::MulAdd(f2, a3, c4), a2);
|
||
VF f0 = hn::Sub(hn::MulAdd(f, a4, c5), a3);
|
||
|
||
VF b1 = hn::MulAdd(f2, d0, d1);
|
||
VF b2 = hn::MulAdd(f2, b1, d2);
|
||
VF b3 = hn::Sub(hn::MulAdd(f2, b2, d3), b1);
|
||
VF f1 = hn::Sub(hn::MulAdd(f, b3, d4), b2);
|
||
|
||
return hn::Div(f0, f1);
|
||
}
|
||
|
||
// Sigmoid using the logistic function 1 / (1 + exp(-x[i]))
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void Sigmoid(float* HWY_RESTRICT x,
|
||
size_t size) {
|
||
PROFILER_ZONE("ops.Sigmoid");
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
hn::Transform(D(), x, size,
|
||
[](D d, hn::Vec<D> v) HWY_ATTR { return Sigmoid(d, v); });
|
||
}
|
||
|
||
namespace detail {
|
||
|
||
// Shared by RMSNorm and RMSNormInplace.
|
||
template <typename VT>
|
||
float RMSNormMul(const VT* HWY_RESTRICT x, size_t size) {
|
||
const hn::ScalableTag<float> d;
|
||
const float l2 = DecompressAndCall(d, MakeSpan(x, size), DotKernelDefault());
|
||
constexpr float kEps = 1e-6f; // avoid divide by zero
|
||
return 1.0f / sqrtf(l2 / StaticCast<float>(size) + kEps);
|
||
}
|
||
|
||
} // namespace detail
|
||
|
||
template <typename VecT, typename WeightT, typename OutT>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(const VecT* HWY_RESTRICT x,
|
||
const WeightT* HWY_RESTRICT weight,
|
||
OutT* HWY_RESTRICT out,
|
||
const size_t size) {
|
||
PROFILER_FUNC;
|
||
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
const hn::ScalableTag<float> df;
|
||
using VF = hn::Vec<decltype(df)>;
|
||
const size_t NF = hn::Lanes(df);
|
||
|
||
const VF mul = hn::Set(df, detail::RMSNormMul(x, size));
|
||
|
||
const auto packed_w = MakeSpan(weight, size);
|
||
const auto packed_v = MakeSpan(x, size);
|
||
const auto packed_out = MakeSpan(out, size);
|
||
|
||
HWY_DASSERT(size % (2 * MaxLanes(df)) == 0);
|
||
for (size_t i = 0; i < size; i += 2 * NF) {
|
||
VF v0, v1, w0, w1;
|
||
Decompress2(df, packed_v, i, v0, v1);
|
||
Decompress2(df, packed_w, i, w0, w1);
|
||
const VF m0 = hn::Mul(mul, v0);
|
||
const VF m1 = hn::Mul(mul, v1);
|
||
// (1+weight) * m = m + weight*m = one FMA.
|
||
const VF out0 = hn::MulAdd(m0, w0, m0);
|
||
const VF out1 = hn::MulAdd(m1, w1, m1);
|
||
Compress2(df, out0, out1, packed_out, i);
|
||
}
|
||
}
|
||
|
||
// Same as RMSNorm, but its HWY_RESTRICT forbids passing the same pointer.
|
||
template <typename WeightT, typename VecT>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace(
|
||
const WeightT* HWY_RESTRICT weight, VecT* HWY_RESTRICT inout,
|
||
const size_t size) {
|
||
PROFILER_FUNC;
|
||
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
const hn::ScalableTag<float> df;
|
||
using VF = hn::Vec<decltype(df)>;
|
||
const size_t NF = hn::Lanes(df);
|
||
|
||
const VF mul = hn::Set(df, detail::RMSNormMul(inout, size));
|
||
|
||
const auto packed_w = MakeSpan(weight, size);
|
||
const auto packed_v = MakeSpan(inout, size);
|
||
|
||
HWY_DASSERT(size % (2 * MaxLanes(df)) == 0);
|
||
for (size_t i = 0; i < size; i += 2 * NF) {
|
||
VF v0, v1, w0, w1;
|
||
Decompress2(df, MakeConst(packed_v), i, v0, v1);
|
||
Decompress2(df, packed_w, i, w0, w1);
|
||
const VF m0 = hn::Mul(mul, v0);
|
||
const VF m1 = hn::Mul(mul, v1);
|
||
// (1+weight) * m = m + weight*m = one FMA.
|
||
const VF out0 = hn::MulAdd(m0, w0, m0);
|
||
const VF out1 = hn::MulAdd(m1, w1, m1);
|
||
Compress2(df, out0, out1, packed_v, i);
|
||
}
|
||
}
|
||
|
||
// Computes mean mu and mean of squares mu2 of a vector. Used in LayerNorm.
|
||
template <typename T>
|
||
HWY_NOINLINE void ScalarMus(const T* HWY_RESTRICT a, size_t size, T& mu,
|
||
T& mu2) {
|
||
HWY_ASSERT(size > 0);
|
||
double sum = 0.0;
|
||
double sum2 = 0.0;
|
||
for (size_t i = 0; i < size; ++i) {
|
||
const float f = hwy::ConvertScalarTo<float>(a[i]);
|
||
sum += f;
|
||
sum2 += f * f;
|
||
}
|
||
mu = sum / size;
|
||
mu2 = sum2 / size;
|
||
}
|
||
|
||
// Compare py/flax/linen/normalization.py.
|
||
// out = (x - mean) * scale * rsqrt(var + epsilon) + bias
|
||
template <typename VecT, typename WeightT, typename OutT>
|
||
HWY_NOINLINE void ScalarLayerNorm(const VecT* x,
|
||
const WeightT* HWY_RESTRICT scale,
|
||
const WeightT* HWY_RESTRICT bias,
|
||
OutT* out,
|
||
size_t size) {
|
||
constexpr float kEps = 1e-6f;
|
||
VecT mu, mu2;
|
||
ScalarMus(x, size, mu, mu2);
|
||
VecT var = mu2 - mu * mu;
|
||
VecT zero = 0.0f;
|
||
var = HWY_MAX(var, zero);
|
||
var = 1.0f / sqrtf(var + kEps);
|
||
for (size_t j = 0; j < size; j++) {
|
||
const float v = hwy::ConvertScalarTo<float>(x[j]);
|
||
const float s = hwy::ConvertScalarTo<float>(scale[j]);
|
||
const float b = hwy::ConvertScalarTo<float>(bias[j]);
|
||
out[j] = hwy::ConvertScalarTo<OutT>((v - mu) * s * var + b);
|
||
}
|
||
}
|
||
|
||
template <typename VecT, typename WeightT, typename OutT>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED void LayerNorm(const VecT* x,
|
||
const WeightT* HWY_RESTRICT weight,
|
||
const WeightT* HWY_RESTRICT bias,
|
||
OutT* out,
|
||
const size_t size) {
|
||
PROFILER_FUNC;
|
||
// For now we only delegate to the scalar version.
|
||
// TODO: implement vectorized version.
|
||
ScalarLayerNorm(x, weight, bias, out, size);
|
||
}
|
||
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void AddAbsolutePositionalEmbeddings(
|
||
float* HWY_RESTRICT x, size_t dim_model, size_t pos) {
|
||
PROFILER_ZONE("ops.AddAbsolutePositionalEmbeddings");
|
||
const size_t num_timescales = dim_model / 2;
|
||
const float log_timescale_increment =
|
||
logf(10000.0f) /
|
||
(num_timescales != 0 ? StaticCast<float>(num_timescales - 1) : 1.0f);
|
||
for (size_t dim = 0; dim < num_timescales; ++dim) {
|
||
const float inv_timescale =
|
||
expf(StaticCast<float>(dim) * -log_timescale_increment);
|
||
x[dim] += sinf(StaticCast<float>(pos) * inv_timescale);
|
||
x[num_timescales + dim] += cosf(StaticCast<float>(pos) * inv_timescale);
|
||
}
|
||
}
|
||
|
||
/* RoPE as in Rotary Position Embeddings from the RoFormer paper
|
||
(https://arxiv.org/abs/2104.09864v5). The query and key vectors are rotated
|
||
as a function of their absolute position using the rotation matrix R before
|
||
the self-attention operation. R is a d x d matrix.
|
||
|
||
R = cos(m*theta_1) -sin(m*theta_1) ... 0 0
|
||
sin(m*theta_1) cos(m*theta_1)
|
||
0 0 ... 0 0
|
||
0 0 ... 0 0
|
||
...
|
||
0 0 ... cos(m*theta_{d/2}) sin(m*theta_{d/2})
|
||
0 0 ... sin(m*theta_{d/2}) cos(m*theta_{d/2})
|
||
|
||
Here theta_i = 10000^(-2(i-1)/d), where d is the dimension of the vector and
|
||
i is the ith index of the vector.
|
||
|
||
Applying the rotation matrix R to a vector v is equivalent to rotating every
|
||
consecutive pair of dimensions of v i.e. v_{2i} and v_{2i+1} by an angle
|
||
m*theta_i. However in the Gemma implementation we choose to rotate
|
||
the pairs of dimensions v_{i} and v_{i + d//2} instead.
|
||
|
||
pos parameter is deliberately an int because in the backward pass we
|
||
call this with negative values (for the VJP calculation we need the transpose
|
||
of this rotation matrix which is simply the same matrix with -pos parameter)
|
||
*/
|
||
|
||
// `inv_timescale[dim_qkv / 2]` is precomputed in Activations::Allocate.
|
||
// This overload is called from backprop/ and if kUseHalfRope.
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void Rope(
|
||
float* HWY_RESTRICT x, size_t dim_qkv,
|
||
const float* HWY_RESTRICT inv_timescale, int pos) {
|
||
PROFILER_FUNC;
|
||
HWY_DASSERT(dim_qkv % 2 == 0);
|
||
const size_t half_dim_qkv = dim_qkv / 2;
|
||
for (size_t dim = 0; dim < half_dim_qkv; ++dim) {
|
||
const float theta = StaticCast<float>(pos) * inv_timescale[dim];
|
||
const float cos_val = cosf(theta);
|
||
const float sin_val = sinf(theta);
|
||
const float x0 = x[dim];
|
||
const float x1 = x[dim + half_dim_qkv];
|
||
x[dim] = x0 * cos_val - x1 * sin_val;
|
||
x[dim + half_dim_qkv] = x0 * sin_val + x1 * cos_val;
|
||
}
|
||
}
|
||
|
||
// `inv_timescale[dim_qkv / 2]` is precomputed in Activations::Allocate.
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void RopeAndMulBy(
|
||
const float mul, float* HWY_RESTRICT x, size_t dim_qkv,
|
||
const float* HWY_RESTRICT inv_timescale, int pos) {
|
||
PROFILER_FUNC;
|
||
HWY_DASSERT(dim_qkv % 2 == 0);
|
||
const size_t half_dim_qkv = dim_qkv / 2;
|
||
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
const D d;
|
||
|
||
// Vectorize computation for half_dim_qkv - (half_dim_qkv % Lanes)
|
||
const size_t vectorizable_dims = hwy::RoundDownTo(half_dim_qkv, hn::Lanes(d));
|
||
size_t dim = 0;
|
||
for (; dim < vectorizable_dims; dim += hn::Lanes(d)) {
|
||
// Compute thetas
|
||
V pos_vec = hn::Set(d, pos);
|
||
V inv_time_scale_vec = hn::LoadU(d, inv_timescale + dim);
|
||
V theta_vec = hn::Mul(pos_vec, inv_time_scale_vec);
|
||
|
||
// Compute rotations.
|
||
V cos_theta_vec;
|
||
V sin_theta_vec;
|
||
hn::SinCos(d, theta_vec, sin_theta_vec, cos_theta_vec);
|
||
|
||
// Scale input with rotations and multiply with constant.
|
||
V mul_vec = hn::Set(d, mul);
|
||
V x0_vec = hn::Mul(mul_vec, hn::LoadU(d, x + dim));
|
||
V x1_vec = hn::Mul(mul_vec, hn::LoadU(d, x + dim + half_dim_qkv));
|
||
|
||
V xout_0_vec = hn::MulSub(x0_vec, cos_theta_vec,
|
||
hn::Mul(x1_vec, sin_theta_vec));
|
||
V xout_1_vec = hn::MulAdd(x0_vec, sin_theta_vec,
|
||
hn::Mul(x1_vec, cos_theta_vec));
|
||
|
||
// Store
|
||
hn::StoreU(xout_0_vec, d, x + dim);
|
||
hn::StoreU(xout_1_vec, d, x + dim + half_dim_qkv);
|
||
}
|
||
|
||
// Vectorize computation for remaining dims - same as above, but with LoadN.
|
||
const size_t remaining_dims = half_dim_qkv - dim;
|
||
HWY_DASSERT(remaining_dims < hn::Lanes(d)); // at most one iteration
|
||
if (remaining_dims != 0) {
|
||
// Compute thetas
|
||
V pos_vec = hn::Set(d, pos);
|
||
V inv_time_scale_vec = hn::LoadN(d, inv_timescale + dim, remaining_dims);
|
||
V theta_vec = hn::Mul(pos_vec, inv_time_scale_vec);
|
||
|
||
// Compute rotations.
|
||
V cos_theta_vec;
|
||
V sin_theta_vec;
|
||
hn::SinCos(d, theta_vec, sin_theta_vec, cos_theta_vec);
|
||
|
||
// Scale input with rotations and multiply with constant.
|
||
V mul_vec = hn::Set(d, mul);
|
||
V x0_vec = hn::Mul(mul_vec, hn::LoadN(d, x + dim, remaining_dims));
|
||
V x1_vec =
|
||
hn::Mul(mul_vec, hn::LoadN(d, x + dim + half_dim_qkv, remaining_dims));
|
||
|
||
V xout_0_vec =
|
||
hn::MulSub(x0_vec, cos_theta_vec, hn::Mul(x1_vec, sin_theta_vec));
|
||
V xout_1_vec =
|
||
hn::MulAdd(x0_vec, sin_theta_vec, hn::Mul(x1_vec, cos_theta_vec));
|
||
|
||
// Store
|
||
hn::StoreN(xout_0_vec, d, x + dim, remaining_dims);
|
||
hn::StoreN(xout_1_vec, d, x + dim + half_dim_qkv, remaining_dims);
|
||
}
|
||
}
|
||
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void AddFrom(
|
||
const float* HWY_RESTRICT other, float* HWY_RESTRICT x, const size_t size) {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
|
||
hn::Transform1(D(), x, size, other,
|
||
[](const auto d, const V x, const V other)
|
||
HWY_ATTR { return hn::Add(x, other); });
|
||
}
|
||
|
||
// Simple loops unless/until batch sizes are large enough to parallelize.
|
||
template <typename WeightT, typename OutT>
|
||
void RMSNormBatched(size_t num_tokens, const float* activations,
|
||
const WeightT* weights, OutT* out, const size_t model_dim) {
|
||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||
RMSNorm(activations + token_idx * model_dim, weights,
|
||
out + token_idx * model_dim, model_dim);
|
||
}
|
||
}
|
||
|
||
// TODO: pass RowVectorBatch argument.
|
||
template <typename WeightT, typename InOutT>
|
||
void RMSNormInplaceBatched(size_t num_tokens, const WeightT* weights,
|
||
InOutT* inout, const size_t model_dim) {
|
||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||
RMSNormInplace(weights, inout + token_idx * model_dim, model_dim);
|
||
}
|
||
}
|
||
|
||
template <typename VecT, typename WeightT, typename OutT>
|
||
void LayerNormBatched(size_t num_tokens, const VecT* x,
|
||
const WeightT* HWY_RESTRICT weight,
|
||
const WeightT* HWY_RESTRICT bias, OutT* out,
|
||
const size_t size) {
|
||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||
LayerNorm(x + token_idx * size, weight, bias, out + token_idx * size, size);
|
||
}
|
||
}
|
||
|
||
static HWY_INLINE void AddFromBatched(size_t num_tokens, const float* other,
|
||
float* x, const size_t model_dim) {
|
||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||
AddFrom(other + token_idx * model_dim, x + token_idx * model_dim,
|
||
model_dim);
|
||
}
|
||
}
|
||
|
||
static HWY_NOINLINE void MulBy(const float* HWY_RESTRICT other,
|
||
float* HWY_RESTRICT x, const size_t size,
|
||
const size_t max_pos) {
|
||
HWY_DASSERT(max_pos <= size);
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
|
||
hn::Transform1(D(), x, max_pos, other,
|
||
[](const auto d, const V x, const V other)
|
||
HWY_ATTR { return hn::Mul(x, other); });
|
||
}
|
||
|
||
static HWY_INLINE HWY_MAYBE_UNUSED void MulBy(const float* HWY_RESTRICT other,
|
||
float* HWY_RESTRICT x,
|
||
const size_t size) {
|
||
return MulBy(other, x, size, size);
|
||
}
|
||
|
||
static HWY_NOINLINE void MulByConst(const float c, float* HWY_RESTRICT x,
|
||
const size_t size, const size_t max_pos) {
|
||
HWY_DASSERT(max_pos <= size);
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
hn::Transform(D(), x, max_pos, [c](const auto d, const V x) HWY_ATTR {
|
||
return hn::Mul(x, hn::Set(d, c));
|
||
});
|
||
}
|
||
|
||
static HWY_INLINE HWY_MAYBE_UNUSED void MulByConst(const float c,
|
||
float* HWY_RESTRICT x,
|
||
const size_t size) {
|
||
MulByConst(c, x, size, size);
|
||
}
|
||
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED void MulByConstAndAdd(
|
||
float c, const float* HWY_RESTRICT x, float* HWY_RESTRICT out,
|
||
size_t size) {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
hn::Transform1(D(), out, size, x,
|
||
[c](const auto d, const V v_out, const V v_x) HWY_ATTR {
|
||
return hn::MulAdd(v_x, hn::Set(d, c), v_out);
|
||
});
|
||
}
|
||
|
||
// See below for a specialized version for top-1 sampling.
|
||
static HWY_NOINLINE void Softmax(float* HWY_RESTRICT x, const size_t size,
|
||
const size_t mask_pos,
|
||
float temperature = 1.0f) {
|
||
HWY_DASSERT(size != 0);
|
||
HWY_DASSERT(mask_pos <= size);
|
||
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
const D d;
|
||
|
||
const V vmin = hn::Set(d, hwy::LowestValue<float>());
|
||
V vmax = vmin;
|
||
V* pmax = &vmax; // workaround for SVE: cannot capture &vector directly
|
||
hn::Foreach(d, x, mask_pos, vmin,
|
||
[pmax](const auto d, const V value)
|
||
HWY_ATTR { *pmax = hn::Max(*pmax, value); });
|
||
vmax = hn::MaxOfLanes(d, vmax);
|
||
|
||
// Subtract max (avoid precision loss for large exponents) and exponentiate.
|
||
hn::Transform(d, x, mask_pos, [pmax](const auto d, const V value) HWY_ATTR {
|
||
if constexpr (HWY_TARGET & HWY_ALL_SVE) {
|
||
// Temporary workaround for buggy SVE codegen: avoid inlined Exp().
|
||
return hn::CallExp(d, hn::Sub(value, *pmax));
|
||
} else {
|
||
return hn::Exp(d, hn::Sub(value, *pmax));
|
||
}
|
||
});
|
||
|
||
if (temperature != 1.0f) {
|
||
const float temperature_inv = 1.0f / temperature;
|
||
hn::Transform(d, x, mask_pos,
|
||
[temperature_inv](const auto d, const V value) HWY_ATTR {
|
||
return hn::Mul(value, hn::Set(d, temperature_inv));
|
||
});
|
||
}
|
||
|
||
// Normalize to probability distribution. The exact sum seems like it should
|
||
// not make a huge difference. It halves the standard deviation of the sum of
|
||
// the normalized probabilities from 1E-7 to 5E-8, but actually also changes
|
||
// the generated text after a few hundred tokens.
|
||
const float sum_exp = Sum(d, x, mask_pos);
|
||
// Double-precision reciprocal does not appear to affect the results.
|
||
const float mul = 1.0f / sum_exp;
|
||
MulByConst(mul, x, size, mask_pos);
|
||
}
|
||
|
||
static HWY_INLINE HWY_MAYBE_UNUSED void Softmax(float* HWY_RESTRICT x,
|
||
const size_t size,
|
||
float temperature = 1.0f) {
|
||
Softmax(x, size, size, temperature);
|
||
}
|
||
|
||
// Note: https://arxiv.org/pdf/2001.04438 proposes to replace the three max /
|
||
// exp / mul passes with two passes, both of which compute Exp. This is
|
||
// reportedly only faster for very large arrays, larger even than our 256K
|
||
// vocab size. We instead fuse the subsequent sampling pass into the softmax,
|
||
// which already knows the max value which top-1 sampling would again seek.
|
||
|
||
// Returns the argmax and x[argmax].
|
||
static HWY_INLINE TokenAndProb ArgmaxAndMax(const float* HWY_RESTRICT x,
|
||
const size_t num) {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
using M = hn::Mask<D>;
|
||
const D d;
|
||
const hn::RebindToSigned<D> di;
|
||
using TI = hn::TFromD<decltype(di)>;
|
||
using VI = hn::Vec<decltype(di)>;
|
||
const size_t N = hn::Lanes(d);
|
||
HWY_ASSERT(num % (2 * N) == 0);
|
||
|
||
V max0 = hn::Set(d, hwy::LowestValue<float>());
|
||
V max1 = max0;
|
||
VI argmax0 = hn::Zero(di);
|
||
VI argmax1 = argmax0;
|
||
|
||
for (size_t i = 0; i < num; i += 2 * N) {
|
||
const V v0 = hn::LoadU(d, x + i);
|
||
const V v1 = hn::LoadU(d, x + i + N);
|
||
const VI vi0 = hn::Iota(di, static_cast<TI>(i));
|
||
const VI vi1 = hn::Iota(di, static_cast<TI>(i + N));
|
||
const M gt0 = hn::Gt(v0, max0);
|
||
const M gt1 = hn::Gt(v1, max1);
|
||
max0 = hn::IfThenElse(gt0, v0, max0);
|
||
max1 = hn::IfThenElse(gt1, v1, max1);
|
||
argmax0 = hn::IfThenElse(hn::RebindMask(di, gt0), vi0, argmax0);
|
||
argmax1 = hn::IfThenElse(hn::RebindMask(di, gt1), vi1, argmax1);
|
||
}
|
||
|
||
// Combine the two vectors
|
||
const M gt0 = hn::Gt(max0, max1);
|
||
max0 = hn::IfThenElse(gt0, max0, max1);
|
||
argmax0 = hn::IfThenElse(hn::RebindMask(di, gt0), argmax0, argmax1);
|
||
|
||
// Reduce to the global max
|
||
const V max = hn::MaxOfLanes(d, max0); // broadcasts
|
||
|
||
// Argmax = lowest-indexed lane equal to the global max
|
||
const size_t lane = hn::FindKnownFirstTrue(d, hn::Eq(max, max0));
|
||
const TI argmax = hn::ExtractLane(argmax0, lane);
|
||
return TokenAndProb{.token = argmax, .prob = hn::GetLane(max)};
|
||
}
|
||
|
||
// Returns argmax of softmax and its probability. This overwrites `x`, but not
|
||
// with normalized probabilities. Only equivalent to `Softmax` + `sample_func`
|
||
// if `kTopK` == 1. This is worthwhile because `num` is typically `kVocabSize`
|
||
// == 256K, and this avoids writing and then scanning again for the max.
|
||
// However, this is not enough to make parallelization worthwhile.
|
||
static HWY_MAYBE_UNUSED TokenAndProb Top1OfSoftmax(float* HWY_RESTRICT x,
|
||
const size_t num) {
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
const hn::ScalableTag<float> d;
|
||
using V = hn::Vec<decltype(d)>;
|
||
|
||
const TokenAndProb argmax = ArgmaxAndMax(x, num);
|
||
|
||
// Subtract max (avoid precision loss for large exponents) and exponentiate.
|
||
const V max = hn::Set(d, argmax.prob);
|
||
const V* pmax = &max;
|
||
hn::Transform(d, x, num, [pmax](const auto d, const V value) HWY_ATTR {
|
||
if constexpr (HWY_TARGET & HWY_ALL_SVE) {
|
||
// Temporary workaround for buggy SVE codegen: avoid inlined Exp().
|
||
return hn::CallExp(d, hn::Sub(value, *pmax));
|
||
} else {
|
||
return hn::Exp(d, hn::Sub(value, *pmax));
|
||
}
|
||
});
|
||
|
||
// Normalize to a single probability. The exact sum seems like it should not
|
||
// make a huge difference. It halves the standard deviation of the sum of the
|
||
// normalized probabilities from 1E-7 to 5E-8, but actually also changes the
|
||
// generated text after a few hundred tokens.
|
||
const float sum_exp = Sum(d, x, num);
|
||
const float prob = x[argmax.token] / sum_exp;
|
||
return TokenAndProb{.token = argmax.token, .prob = prob};
|
||
}
|
||
|
||
static HWY_NOINLINE void LogitsSoftCap(const float cap, float* HWY_RESTRICT x,
|
||
const size_t size,
|
||
const size_t max_pos) {
|
||
HWY_DASSERT(max_pos <= size);
|
||
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
using V = hn::Vec<D>;
|
||
|
||
const float inv_cap = 1.0f / cap;
|
||
|
||
hn::Transform(D(), x, max_pos, [cap, inv_cap](D d, V v) HWY_ATTR {
|
||
return hn::Mul(hn::Set(d, cap),
|
||
hn::Tanh(d, hn::Mul(v, hn::Set(d, inv_cap))));
|
||
});
|
||
}
|
||
|
||
static HWY_INLINE void LogitsSoftCap(const float cap, float* HWY_RESTRICT x,
|
||
const size_t size) {
|
||
LogitsSoftCap(cap, x, size, size);
|
||
}
|
||
|
||
// Calls LogitsSoftCap if cap != 0.0f.
|
||
static HWY_INLINE HWY_MAYBE_UNUSED void MaybeLogitsSoftCap(
|
||
const float cap, float* HWY_RESTRICT x, const size_t size) {
|
||
if (cap != 0.0f) {
|
||
LogitsSoftCap(cap, x, size, size);
|
||
}
|
||
}
|
||
|
||
static HWY_NOINLINE HWY_MAYBE_UNUSED size_t
|
||
SampleArgmax(const float* probabilities, size_t vocab_size) {
|
||
size_t max_index = 0;
|
||
float max_prob = probabilities[0];
|
||
for (size_t i = 1; i < vocab_size; ++i) {
|
||
if (probabilities[i] > max_prob) {
|
||
max_index = i;
|
||
max_prob = probabilities[i];
|
||
}
|
||
}
|
||
return max_index;
|
||
}
|
||
|
||
HWY_INLINE HWY_MAYBE_UNUSED std::discrete_distribution<int> create_distribution(
|
||
std::vector<float>& top_k, float temperature) {
|
||
HWY_ASSERT(temperature >= 0.0f);
|
||
if (temperature == 0.0f) {
|
||
// Temperature == 0 is a special case which always returns the argmax (0).
|
||
// We also want to avoid dividing by zero in the code below.
|
||
return std::discrete_distribution<int>();
|
||
}
|
||
namespace hn = hwy::HWY_NAMESPACE;
|
||
using D = hn::ScalableTag<float>;
|
||
|
||
// re-normalize distribution
|
||
const float temperature_inv = 1.0f / temperature;
|
||
hn::Transform(D(), top_k.data(), top_k.size(),
|
||
[temperature_inv](D d, hn::Vec<D> v) HWY_ATTR {
|
||
return hn::Exp(
|
||
d, hn::Mul(hn::Log(d, v), hn::Set(d, temperature_inv)));
|
||
});
|
||
|
||
return std::discrete_distribution<int>(std::begin(top_k), std::end(top_k));
|
||
}
|
||
|
||
template <typename TAcceptToken>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED std::vector<TokenAndProb> TopK(
|
||
const float* HWY_RESTRICT probabilities, size_t vocab_size, size_t k,
|
||
TAcceptToken& accept_token) {
|
||
HWY_ASSERT(k != 0);
|
||
HWY_ASSERT(k <= vocab_size);
|
||
std::vector<double> packed_token_probs;
|
||
for (int32_t i = 0; i < vocab_size; ++i) {
|
||
if (accept_token && !accept_token(StaticCast<int>(i), probabilities[i])) {
|
||
continue;
|
||
}
|
||
packed_token_probs.push_back(PackTokenAndProb(i, probabilities[i]));
|
||
}
|
||
|
||
hwy::VQSelect(packed_token_probs.data(), packed_token_probs.size(), k,
|
||
hwy::SortDescending());
|
||
hwy::VQSort(packed_token_probs.data(), k, hwy::SortDescending());
|
||
|
||
std::vector<TokenAndProb> token_probs;
|
||
token_probs.reserve(k);
|
||
for (int32_t i = 0; i < k; ++i) {
|
||
token_probs.push_back(UnpackTokenAndProb(packed_token_probs[i]));
|
||
}
|
||
return token_probs;
|
||
}
|
||
|
||
template <typename TAcceptToken>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED int SampleTopK(
|
||
const float* HWY_RESTRICT probabilities, size_t k, size_t vocab_size,
|
||
std::mt19937& gen, float temperature, TAcceptToken& accept_token) {
|
||
std::vector<TokenAndProb> token_probs =
|
||
TopK(probabilities, vocab_size, k, accept_token);
|
||
std::vector<int> topk_indices(k);
|
||
std::vector<float> topk_probs(k);
|
||
for (int i = 0; i < k; ++i) {
|
||
topk_indices[i] = token_probs[i].token;
|
||
topk_probs[i] = token_probs[i].prob;
|
||
}
|
||
return topk_indices[create_distribution(topk_probs, temperature)(gen)];
|
||
}
|
||
|
||
template <typename TAcceptToken>
|
||
HWY_NOINLINE HWY_MAYBE_UNUSED TokenAndProb FusedSoftmaxAndSampleTopK(
|
||
const float* HWY_RESTRICT logits, size_t k, size_t vocab_size,
|
||
std::mt19937& gen, float temperature, TAcceptToken& accept_token) {
|
||
// Softmax and sample top-K is equivalent to taking the top-K logits and
|
||
// sampling from the softmax of the top-K logits. The latter is faster as it
|
||
// avoids computing the softmax of all logits.
|
||
std::vector<TokenAndProb> token_logits =
|
||
TopK(logits, vocab_size, k, accept_token);
|
||
std::vector<int> topk_indices(k);
|
||
std::vector<float> topk_logits(k);
|
||
for (int i = 0; i < token_logits.size(); ++i) {
|
||
topk_indices[i] = token_logits[i].token;
|
||
topk_logits[i] = token_logits[i].prob;
|
||
}
|
||
|
||
size_t mask = token_logits.size();
|
||
Softmax(topk_logits.data(), mask, temperature);
|
||
auto distribution = std::discrete_distribution<int>(
|
||
std::begin(topk_logits), std::begin(topk_logits) + mask);
|
||
int topk_sampled_index = distribution(gen);
|
||
int sampled_index = topk_indices[topk_sampled_index];
|
||
return TokenAndProb{.token = sampled_index,
|
||
.prob = topk_logits[topk_sampled_index]};
|
||
}
|
||
|
||
// Performs 4x4 average pooling across row vectors
|
||
// Input has 4096 (64*64) rows, output has 256 (16*16) rows
|
||
// Each output row is the average of a 4x4 block of input rows
|
||
template <typename T>
|
||
RowVectorBatch<T> AvgPool4x4(RowVectorBatch<T>& input) {
|
||
const Allocator& allocator = ThreadingContext::Get().allocator;
|
||
const Extents2D extents = input.Extents();
|
||
// Input validation
|
||
HWY_DASSERT(extents.rows == 4096); // 64 * 64 = 4096 input rows
|
||
// Create output with 256 rows and same number of columns
|
||
const size_t out_rows = 256; // 16 * 16 = 256 output rows
|
||
RowVectorBatch<T> result(allocator, Extents2D(out_rows, extents.cols));
|
||
const size_t input_dim = 64; // Input is 64×64
|
||
const size_t output_dim = 16; // Output is 16×16
|
||
for (size_t out_row_idx = 0; out_row_idx < output_dim; ++out_row_idx) {
|
||
for (size_t out_col_idx = 0; out_col_idx < output_dim; ++out_col_idx) {
|
||
size_t out_idx = out_row_idx * output_dim + out_col_idx;
|
||
T* output_row = result.Batch(out_idx);
|
||
// Initialize output row to zeros
|
||
std::fill(output_row, output_row + extents.cols, 0);
|
||
// Average 16 row vectors from a 4x4 block
|
||
for (size_t i = 0; i < 4; ++i) {
|
||
for (size_t j = 0; j < 4; ++j) {
|
||
size_t in_row_idx = out_row_idx * 4 + i;
|
||
size_t in_col_idx = out_col_idx * 4 + j;
|
||
size_t in_idx = in_row_idx * input_dim + in_col_idx;
|
||
const T* input_row = input.Batch(in_idx);
|
||
// Add each input row to the output
|
||
// TODO(philculliton): use AddFrom in ops-inl for a vectorized loop.
|
||
for (size_t col = 0; col < extents.cols; ++col) {
|
||
output_row[col] += input_row[col];
|
||
}
|
||
}
|
||
}
|
||
// Divide by 16 to get the average
|
||
for (size_t col = 0; col < extents.cols; ++col) {
|
||
output_row[col] *= T{0.0625};
|
||
}
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// NOLINTNEXTLINE(google-readability-namespace-comments)
|
||
} // namespace HWY_NAMESPACE
|
||
} // namespace gcpp
|
||
HWY_AFTER_NAMESPACE();
|
||
|
||
#endif // NOLINT
|