mirror of https://github.com/google/gemma.cpp.git
262 lines
9.0 KiB
C++
262 lines
9.0 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gemma/weights.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "compression/compress.h"
|
|
#include "compression/types.h"
|
|
#include "gemma/configs.h"
|
|
#include "gemma/model_store.h"
|
|
#include "io/blob_store.h"
|
|
#include "util/mat.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/highway.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/stats.h"
|
|
|
|
// TODO: move into foreach_target; this is only used for NUQ Reshape.
|
|
#include "compression/compress-inl.h"
|
|
|
|
namespace gcpp {
|
|
|
|
template <>
|
|
void LayerWeightsPtrs<NuqStream>::Reshape() {
|
|
if (!attn_vec_einsum_w.HasPtr()) return;
|
|
HWY_ASSERT(attn_vec_einsum_w.GetType() == Type::kNUQ);
|
|
|
|
HWY_ASSERT(att_weights.HasPtr());
|
|
HWY_ASSERT(att_weights.GetType() == Type::kNUQ);
|
|
|
|
const size_t model_dim = layer_config.model_dim;
|
|
const size_t heads = layer_config.heads;
|
|
const size_t qkv_dim = layer_config.qkv_dim;
|
|
|
|
// Reshape [kHeads, kModelDim, kQKVDim] to [kModelDim, kHeads * kQKVDim].
|
|
hwy::AlignedFreeUniquePtr<float[]> attn_vec_einsum_w_tmp =
|
|
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
|
|
hwy::AlignedFreeUniquePtr<float[]> att_weights_tmp =
|
|
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
|
|
|
|
const hwy::HWY_NAMESPACE::ScalableTag<float> df;
|
|
HWY_NAMESPACE::DecompressAndZeroPad(df, attn_vec_einsum_w.Span(), 0,
|
|
attn_vec_einsum_w_tmp.get(),
|
|
model_dim * heads * qkv_dim);
|
|
|
|
for (size_t m = 0; m < model_dim; ++m) {
|
|
float* HWY_RESTRICT out_row = att_weights_tmp.get() + m * heads * qkv_dim;
|
|
for (size_t h = 0; h < heads; ++h) {
|
|
hwy::CopyBytes(
|
|
attn_vec_einsum_w_tmp.get() + h * model_dim * qkv_dim + m * qkv_dim,
|
|
out_row + h * qkv_dim, qkv_dim * sizeof(float));
|
|
}
|
|
}
|
|
|
|
CompressWorkingSet work;
|
|
hwy::ThreadPool pool(0);
|
|
HWY_NAMESPACE::Compress(att_weights_tmp.get(), model_dim * heads * qkv_dim,
|
|
work, att_weights.Span(),
|
|
/*packed_ofs=*/0, pool);
|
|
|
|
att_weights.SetScale(attn_vec_einsum_w.Scale());
|
|
}
|
|
|
|
// Aborts on error.
|
|
static void MapOrRead(const std::vector<MatPtr*>& mats, BlobReader& reader,
|
|
const std::vector<BlobRange>& ranges,
|
|
MatOwners& mat_owners, const MatPadding padding,
|
|
hwy::ThreadPool& pool) {
|
|
HWY_ASSERT(mats.size() == ranges.size());
|
|
|
|
if (reader.IsMapped()) {
|
|
PROFILER_ZONE("Startup.Weights.Map");
|
|
for (size_t i = 0; i < mats.size(); ++i) {
|
|
// SetPtr does not change the stride, but it is expected to be packed
|
|
// because that is what Compress() writes to the file.
|
|
const size_t mat_bytes = mats[i]->PackedBytes();
|
|
// Ensure blob size matches that computed from metadata.
|
|
HWY_ASSERT_M(mat_bytes == ranges[i].bytes, mats[i]->Name());
|
|
|
|
hwy::Span<const uint8_t> span = reader.MappedSpan<uint8_t>(ranges[i]);
|
|
HWY_ASSERT(span.size() == mat_bytes);
|
|
mats[i]->SetPtr(const_cast<uint8_t*>(span.data()), mats[i]->Stride());
|
|
}
|
|
return;
|
|
}
|
|
|
|
PROFILER_ZONE("Startup.Weights.AllocateAndEnqueue");
|
|
|
|
// NOTE: this changes the stride of `mats`!
|
|
mat_owners.AllocateFor(mats, padding, pool);
|
|
|
|
// Enqueue the read requests, one per row in each tensor.
|
|
for (size_t i = 0; i < mats.size(); ++i) {
|
|
uint64_t offset = ranges[i].offset;
|
|
const size_t file_bytes_per_row = mats[i]->Cols() * mats[i]->ElementBytes();
|
|
// Caution, `RowT` requires knowledge of the actual type. We instead use
|
|
// the first row, which is the same for any type, and advance the *byte*
|
|
// pointer by the *byte* stride.
|
|
const size_t mem_stride_bytes = mats[i]->Stride() * mats[i]->ElementBytes();
|
|
uint8_t* row = mats[i]->RowT<uint8_t>(0);
|
|
for (size_t r = 0; r < mats[i]->Rows(); ++r) {
|
|
reader.Enqueue(BlobRange{.offset = offset,
|
|
.bytes = file_bytes_per_row,
|
|
.key_idx = ranges[i].key_idx},
|
|
row);
|
|
offset += file_bytes_per_row;
|
|
row += mem_stride_bytes;
|
|
// Keep the in-memory row padding uninitialized so msan detects any use.
|
|
}
|
|
}
|
|
|
|
reader.ReadAll(pool);
|
|
}
|
|
|
|
void WeightsOwner::ReadOrAllocate(const ModelStore& model, BlobReader& reader,
|
|
hwy::ThreadPool& pool) {
|
|
// List of tensors to read/map, and where from.
|
|
std::vector<MatPtr*> mats;
|
|
std::vector<BlobRange> ranges;
|
|
|
|
// Padding is inserted when reading row by row, except for NUQ tensors.
|
|
const MatPadding padding = MatPadding::kOdd;
|
|
|
|
AllocatePointer(model.Config());
|
|
|
|
// Enumerate all weights (negligible cost).
|
|
CallT([&](const auto& weights) {
|
|
weights->ForEachTensor(nullptr, nullptr, [&](const TensorArgs& t) {
|
|
if (t.flags & TensorArgs::kOnlyAllocate) {
|
|
mat_owners_.AllocateFor(t.mat, padding);
|
|
return;
|
|
}
|
|
size_t key_idx;
|
|
if (model.FindAndUpdateMatPtr(t.mat, key_idx)) {
|
|
mats.push_back(&t.mat);
|
|
ranges.push_back(reader.Range(key_idx));
|
|
return;
|
|
}
|
|
if (t.flags & TensorArgs::kMaybeRead) return; // optional and not found.
|
|
HWY_ABORT("Tensor %s is required but not found in file.", t.mat.Name());
|
|
});
|
|
});
|
|
|
|
MapOrRead(mats, reader, ranges, mat_owners_, padding, pool);
|
|
|
|
Reshape(pool);
|
|
}
|
|
|
|
// Allocates `*_weights_`, but not yet the tensors inside. This is split out
|
|
// of `CallT` because that is const, hence it would pass a const& of the
|
|
// `unique_ptr` to its lambda, but we want to reset the pointer.
|
|
void WeightsOwner::AllocatePointer(const ModelConfig& config) {
|
|
switch (weight_type_) {
|
|
case Type::kSFP:
|
|
sfp_weights_.reset(new ModelWeightsPtrs<SfpStream>(config));
|
|
break;
|
|
case Type::kNUQ:
|
|
nuq_weights_.reset(new ModelWeightsPtrs<NuqStream>(config));
|
|
break;
|
|
case Type::kF32:
|
|
float_weights_.reset(new ModelWeightsPtrs<float>(config));
|
|
break;
|
|
case Type::kBF16:
|
|
bf16_weights_.reset(new ModelWeightsPtrs<BF16>(config));
|
|
break;
|
|
default:
|
|
HWY_ABORT("Unsupported weight type %s.", TypeName(weight_type_));
|
|
}
|
|
}
|
|
|
|
// Gemma calls `WeightsOwner::ReadOrAllocate`, but test code instead calls
|
|
// `WeightsPtrs::AllocateForTest`, so the implementation is there, and here
|
|
// we only type-dispatch.
|
|
void WeightsOwner::AllocateForTest(const ModelConfig& config,
|
|
hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Startup.AllocateWeights");
|
|
|
|
AllocatePointer(config);
|
|
CallT([&](const auto& weights) {
|
|
weights->AllocateForTest(mat_owners_, pool);
|
|
});
|
|
}
|
|
|
|
void WeightsOwner::ZeroInit() {
|
|
PROFILER_FUNC;
|
|
CallT([](const auto& weights) { weights->ZeroInit(); });
|
|
}
|
|
|
|
void WeightsOwner::RandInit(float stddev, std::mt19937& gen) {
|
|
PROFILER_FUNC;
|
|
float_weights_->RandInit(stddev, gen);
|
|
}
|
|
|
|
void WeightsOwner::LogWeightStatsF32() {
|
|
size_t total_weights = 0;
|
|
HWY_ASSERT(weight_type_ == Type::kF32); // Only for float weights.
|
|
float_weights_->ForEachTensor(
|
|
nullptr, nullptr, [&total_weights](const TensorArgs& t) {
|
|
if (t.mat.Scale() != 1.0f) {
|
|
printf("[scale=%f] ", t.mat.Scale());
|
|
}
|
|
hwy::Stats stats;
|
|
HWY_ASSERT(t.mat.GetType() == Type::kF32);
|
|
for (size_t r = 0; r < t.mat.Rows(); ++r) {
|
|
const float* HWY_RESTRICT row = t.mat.RowT<float>(r);
|
|
for (size_t c = 0; c < t.mat.Cols(); ++c) {
|
|
stats.Notify(row[c]);
|
|
}
|
|
}
|
|
printf("%-20s %12zu %13.10f %8.5f %13.10f\n", t.mat.Name(),
|
|
t.mat.Rows() * t.mat.Cols(), stats.Min(), stats.Mean(),
|
|
stats.Max());
|
|
|
|
total_weights += t.mat.Rows() * t.mat.Cols();
|
|
});
|
|
printf("%-20s %12zu\n", "Total", total_weights);
|
|
}
|
|
|
|
void WeightsOwner::Reshape(hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Startup.Reshape");
|
|
CallT([&pool](const auto& weights) { weights->Reshape(pool); });
|
|
}
|
|
|
|
std::vector<uint32_t> WeightsOwner::AddTensorDataToWriter(
|
|
BlobWriter& writer) const {
|
|
std::vector<uint32_t> serialized_mat_ptrs;
|
|
CallT([&](const auto& weights) {
|
|
weights->ForEachTensor(nullptr, nullptr, [&](const TensorArgs& t) {
|
|
if (t.flags & TensorArgs::kOnlyAllocate) return;
|
|
if (t.flags & TensorArgs::kMaybeRead && !t.mat.HasPtr()) return;
|
|
HWY_ASSERT_M(t.mat.HasPtr(), t.mat.Name());
|
|
writer.Add(t.mat.Name(), t.mat.Packed(), t.mat.PackedBytes());
|
|
t.mat.AppendTo(serialized_mat_ptrs);
|
|
});
|
|
});
|
|
return serialized_mat_ptrs;
|
|
}
|
|
|
|
} // namespace gcpp
|