mirror of https://github.com/google/gemma.cpp.git
142 lines
5.5 KiB
C++
142 lines
5.5 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gemma/common.h"
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm> // std::transform
|
|
#include <cctype>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
|
|
namespace gcpp {
|
|
|
|
constexpr const char* kModelFlags[] = {
|
|
"2b-pt", "2b-it", // Gemma 2B
|
|
"7b-pt", "7b-it", // Gemma 7B
|
|
"9b-pt", "9b-it", // Gemma 9B
|
|
"27b-pt", "27b-it", // Gemma 27B
|
|
"gr2b-pt", "gr2b-it", // RecurrentGemma
|
|
"tiny", // Gemma Tiny (mostly for debugging)
|
|
"gemma2-2b-pt", "gemma2-2b-it", // Gemma2 2B
|
|
};
|
|
constexpr Model kModelTypes[] = {
|
|
Model::GEMMA_2B, Model::GEMMA_2B, // Gemma 2B
|
|
Model::GEMMA_7B, Model::GEMMA_7B, // Gemma 7B
|
|
Model::GEMMA_9B, Model::GEMMA_9B, // Gemma 9B
|
|
Model::GEMMA_27B, Model::GEMMA_27B, // Gemma 27B
|
|
Model::GRIFFIN_2B, Model::GRIFFIN_2B, // RecurrentGemma
|
|
Model::GEMMA_TINY, // Gemma Tiny
|
|
Model::GEMMA2_2B, Model::GEMMA2_2B, // Gemma2 2B
|
|
};
|
|
constexpr ModelTraining kModelTraining[] = {
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // Gemma 2B
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // Gemma 7B
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // Gemma 9B
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // Gemma 27B
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // RecurrentGemma
|
|
ModelTraining::GEMMA_IT, // Gemma Tiny
|
|
ModelTraining::GEMMA_PT, ModelTraining::GEMMA_IT, // Gemma 2B2
|
|
};
|
|
|
|
constexpr size_t kNumModelFlags =
|
|
std::end(kModelFlags) - std::begin(kModelFlags);
|
|
static_assert(kNumModelFlags ==
|
|
std::end(kModelTypes) - std::begin(kModelTypes));
|
|
static_assert(kNumModelFlags ==
|
|
std::end(kModelTraining) - std::begin(kModelTraining));
|
|
|
|
const char* ParseModelTypeAndTraining(const std::string& model_flag,
|
|
Model& model, ModelTraining& training) {
|
|
static char kErrorMessageBuffer[kNumModelFlags * 8 + 1024] =
|
|
"Invalid or missing model flag, need to specify one of ";
|
|
for (size_t i = 0; i + 1 < kNumModelFlags; i++) {
|
|
strcat(kErrorMessageBuffer, kModelFlags[i]); // NOLINT
|
|
strcat(kErrorMessageBuffer, ", "); // NOLINT
|
|
}
|
|
strcat(kErrorMessageBuffer, kModelFlags[kNumModelFlags - 1]); // NOLINT
|
|
strcat(kErrorMessageBuffer, "."); // NOLINT
|
|
|
|
std::string model_type_lc = model_flag;
|
|
std::transform(begin(model_type_lc), end(model_type_lc), begin(model_type_lc),
|
|
[](unsigned char c) { return std::tolower(c); });
|
|
|
|
for (size_t i = 0; i < kNumModelFlags; i++) {
|
|
if (kModelFlags[i] == model_type_lc) {
|
|
model = kModelTypes[i];
|
|
training = kModelTraining[i];
|
|
HWY_ASSERT(std::string(ModelString(model, training)) == model_type_lc);
|
|
return nullptr;
|
|
}
|
|
}
|
|
return kErrorMessageBuffer;
|
|
}
|
|
|
|
const char* ModelString(Model model, ModelTraining training) {
|
|
for (size_t i = 0; i < kNumModelFlags; i++) {
|
|
if (kModelTypes[i] == model && kModelTraining[i] == training)
|
|
return kModelFlags[i];
|
|
}
|
|
HWY_ABORT("Unknown model %d training %d\n", static_cast<int>(model),
|
|
static_cast<int>(training));
|
|
}
|
|
|
|
constexpr const char* kTypeStrings[] = {"f32", "bf16", "sfp"};
|
|
|
|
const char* StringFromType(Type type) {
|
|
return kTypeStrings[static_cast<size_t>(type)];
|
|
}
|
|
|
|
const char* ParseType(const std::string& type_string, Type& type) {
|
|
constexpr size_t kNum = std::end(kTypeStrings) - std::begin(kTypeStrings);
|
|
static char kErrorMessageBuffer[kNum * 8 + 100] =
|
|
"Invalid or missing type, need to specify one of ";
|
|
for (size_t i = 0; i + 1 < kNum; i++) {
|
|
strcat(kErrorMessageBuffer, kTypeStrings[i]); // NOLINT
|
|
strcat(kErrorMessageBuffer, ", "); // NOLINT
|
|
}
|
|
strcat(kErrorMessageBuffer, kTypeStrings[kNum - 1]); // NOLINT
|
|
strcat(kErrorMessageBuffer, "."); // NOLINT
|
|
std::string type_lc = type_string;
|
|
std::transform(begin(type_lc), end(type_lc), begin(type_lc),
|
|
[](unsigned char c) { return std::tolower(c); });
|
|
for (size_t i = 0; i < kNum; i++) {
|
|
if (kTypeStrings[i] == type_lc) {
|
|
type = static_cast<Type>(i);
|
|
HWY_ASSERT(std::string(StringFromType(type)) == type_lc);
|
|
return nullptr;
|
|
}
|
|
}
|
|
return kErrorMessageBuffer;
|
|
}
|
|
|
|
void Wrap(const ModelInfo& info, size_t pos, std::string& prompt) {
|
|
|
|
// Instruction-tuned models are trained to expect control tokens.
|
|
if (info.training == ModelTraining::GEMMA_IT) {
|
|
// Prepend "<end_of_turn>" if this is a multi-turn dialogue continuation.
|
|
const std::string start = (pos == 0)
|
|
? "<start_of_turn>user\n"
|
|
: "<end_of_turn>\n<start_of_turn>user\n";
|
|
prompt = start + prompt + "<end_of_turn>\n<start_of_turn>model\n";
|
|
}
|
|
}
|
|
} // namespace gcpp
|