mirror of https://github.com/google/gemma.cpp.git
410 lines
17 KiB
C++
410 lines
17 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Implementation of the Vector-Jacobian Products (VJP) of the individual
|
|
// operations of the forward pass.
|
|
|
|
// Include guard for non-SIMD code.
|
|
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_INL_H_
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_INL_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "backprop/activations.h"
|
|
#include "backprop/prompt.h"
|
|
#include "gemma/common.h" // EmbeddingScaling
|
|
#include "gemma/configs.h" // LayerConfig, ModelConfig
|
|
#include "gemma/weights.h"
|
|
#include "util/allocator.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_INL_H_
|
|
|
|
// Include guard for (potentially) SIMD code.
|
|
#if defined(THIRD_PARTY_GEMMA_CPP_BACKWARD_TOGGLE) == defined(HWY_TARGET_TOGGLE)
|
|
#ifdef THIRD_PARTY_GEMMA_CPP_BACKWARD_TOGGLE
|
|
#undef THIRD_PARTY_GEMMA_CPP_BACKWARD_TOGGLE
|
|
#else
|
|
#define THIRD_PARTY_GEMMA_CPP_BACKWARD_TOGGLE
|
|
#endif
|
|
|
|
#include "hwy/highway.h"
|
|
// After highway.h
|
|
#include "ops/matmul-inl.h"
|
|
#include "ops/ops-inl.h"
|
|
#include "hwy/contrib/dot/dot-inl.h"
|
|
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace gcpp {
|
|
namespace HWY_NAMESPACE {
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
|
|
HWY_INLINE void MatMulVJP(const float* HWY_RESTRICT weights, // kRows * kCols,
|
|
const float* HWY_RESTRICT x, // num_tokens * kCols
|
|
const float* HWY_RESTRICT v, // num_tokens * kRows
|
|
size_t cols, size_t rows, size_t num_tokens,
|
|
float* HWY_RESTRICT grad_w, // kRows * kCols,
|
|
float* HWY_RESTRICT grad_x, // num_tokens * kCols
|
|
hwy::ThreadPool& pool) {
|
|
hwy::ZeroBytes(grad_x, num_tokens * cols * sizeof(grad_x[0]));
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t voffs = pos * rows;
|
|
const size_t xoffs = pos * cols;
|
|
for (size_t j = 0; j < rows; ++j) {
|
|
MulByConstAndAdd(v[voffs + j], &x[xoffs], &grad_w[j * cols], cols);
|
|
MulByConstAndAdd(v[voffs + j], &weights[j * cols], &grad_x[xoffs], cols);
|
|
}
|
|
}
|
|
}
|
|
|
|
HWY_INLINE void MultiHeadMatMulVJP(
|
|
const float* HWY_RESTRICT weights, // heads * kRows * kCols
|
|
const float* HWY_RESTRICT x, // num_tokens * heads * kCols
|
|
const float* HWY_RESTRICT v, // num_tokens * kRows
|
|
size_t heads, size_t cols, size_t rows, size_t num_tokens,
|
|
float* HWY_RESTRICT grad_w, // heads * kRows * kCols
|
|
float* HWY_RESTRICT grad_x, // num_tokens * heads * kCols
|
|
hwy::ThreadPool& pool) {
|
|
hwy::ZeroBytes(grad_x, num_tokens * heads * cols * sizeof(grad_x[0]));
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
for (size_t j = 0; j < rows; ++j) {
|
|
for (size_t h = 0; h < heads; ++h) {
|
|
MulByConstAndAdd(v[pos * rows + j], &x[pos * heads * cols + h * cols],
|
|
&grad_w[h * rows * cols + j * cols], cols);
|
|
MulByConstAndAdd(v[pos * rows + j],
|
|
&weights[h * rows * cols + j * cols],
|
|
&grad_x[pos * heads * cols + h * cols], cols);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class D, HWY_IF_F32_D(D)>
|
|
static HWY_INLINE hn::Vec<D> DGelu(D d, hn::Vec<D> v) {
|
|
const hn::Vec<D> kMul = hn::Set(d, 0.044715f);
|
|
const hn::Vec<D> kSqrt2OverPi = hn::Set(d, 0.797884560804236f);
|
|
const hn::Vec<D> kHalf = hn::Set(d, 0.5f);
|
|
const hn::Vec<D> kOne = hn::Set(d, 1.0f);
|
|
// kSqrtOverPi*3*kMul
|
|
const hn::Vec<D> kMulv2 = hn::Set(d, 0.1070322244f);
|
|
|
|
const hn::Vec<D> v2 = hn::Mul(v, v);
|
|
const hn::Vec<D> v3 = hn::Mul(v2, v);
|
|
const hn::Vec<D> arg = hn::Mul(kSqrt2OverPi, hn::MulAdd(kMul, v3, v));
|
|
const hn::Vec<D> tanh = hn::Tanh(d, arg);
|
|
const hn::Vec<D> cdf = hn::MulAdd(kHalf, tanh, kHalf);
|
|
const hn::Vec<D> dtanh = hn::Sub(kOne, hn::Mul(tanh, tanh));
|
|
const hn::Vec<D> darg = hn::MulAdd(kMulv2, v2, kSqrt2OverPi);
|
|
return hn::MulAdd(kHalf, hn::Mul(v, hn::Mul(dtanh, darg)), cdf);
|
|
}
|
|
|
|
static HWY_NOINLINE void SoftmaxVJP(const float* HWY_RESTRICT forward,
|
|
float* HWY_RESTRICT backward,
|
|
const size_t size) {
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using D = hn::ScalableTag<float>;
|
|
const D d;
|
|
|
|
const auto offset =
|
|
hn::Set(d, hn::Dot::Compute<0>(d, forward, backward, size));
|
|
hn::Transform1(
|
|
d, backward, size, forward,
|
|
[&offset](const auto d, const auto v, const auto y)
|
|
HWY_ATTR { return hn::Mul(y, hn::Sub(v, offset)); });
|
|
}
|
|
|
|
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormVJP(
|
|
const float* HWY_RESTRICT weights, const float* HWY_RESTRICT x,
|
|
const float* HWY_RESTRICT v, size_t model_dim, size_t num_tokens,
|
|
float* HWY_RESTRICT grad_w, float* HWY_RESTRICT grad_x,
|
|
hwy::ThreadPool& pool) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t offset = pos * model_dim;
|
|
const float ss = detail::RMSNormMul(x + offset, model_dim);
|
|
|
|
for (size_t i = 0; i < model_dim; ++i) {
|
|
grad_w[i] += v[offset + i] * x[offset + i] * ss;
|
|
}
|
|
const float ss3 = ss * ss * ss / StaticCast<float>(model_dim);
|
|
float tmp = 0.0f;
|
|
for (size_t i = 0; i < model_dim; ++i) {
|
|
tmp += (1.0f + weights[i]) * v[offset + i] * x[offset + i];
|
|
}
|
|
tmp *= ss3;
|
|
for (size_t i = 0; i < model_dim; ++i) {
|
|
grad_x[offset + i] = ss * (1.0f + weights[i]) * v[offset + i] -
|
|
tmp * x[offset + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static HWY_NOINLINE HWY_MAYBE_UNUSED void InputEmbeddingVJP(
|
|
const float* weights, const std::vector<int>& prompt, const float scaling,
|
|
const float* HWY_RESTRICT v, float* HWY_RESTRICT grad, size_t model_dim) {
|
|
HWY_ASSERT(!prompt.empty());
|
|
for (size_t pos = 0; pos < prompt.size() - 1; ++pos) {
|
|
int token = prompt[pos];
|
|
MulByConstAndAdd(scaling, v + pos * model_dim,
|
|
grad + token * model_dim, model_dim);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void LayerVJP(const LayerWeightsPtrs<T>& weights,
|
|
const ForwardLayer<float>& forward,
|
|
const float* HWY_RESTRICT next_layer_grad, size_t num_tokens,
|
|
LayerWeightsPtrs<T>& grad, ForwardLayer<float>& backward,
|
|
const RowVectorBatch<float>& inv_timescale,
|
|
hwy::ThreadPool& pool) {
|
|
const LayerConfig& config = weights.layer_config;
|
|
const size_t model_dim = config.model_dim;
|
|
const size_t qkv_dim = config.qkv_dim;
|
|
const size_t heads = config.heads;
|
|
const size_t seq_len = forward.input.Rows();
|
|
const size_t ff_hidden_dim = config.ff_hidden_dim;
|
|
const float query_scale =
|
|
static_cast<float>(1.0 / sqrt(static_cast<double>(qkv_dim)));
|
|
HWY_ASSERT(num_tokens <= seq_len);
|
|
|
|
MatMulVJP(weights.linear_w.Packed(), forward.ffw_hidden_gated.Packed(),
|
|
next_layer_grad, ff_hidden_dim, model_dim, num_tokens,
|
|
grad.linear_w.Packed(), backward.ffw_hidden_gated.Packed(), pool);
|
|
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t hidden_offset = pos * ff_hidden_dim * 2;
|
|
const float* HWY_RESTRICT f_out =
|
|
forward.ffw_hidden.Packed() + hidden_offset;
|
|
const float* HWY_RESTRICT f_out_mul = f_out + ff_hidden_dim;
|
|
const float* HWY_RESTRICT b_out_gated =
|
|
backward.ffw_hidden_gated.Packed() + pos * ff_hidden_dim;
|
|
float* HWY_RESTRICT b_out = backward.ffw_hidden.Packed() + hidden_offset;
|
|
float* HWY_RESTRICT b_out_mul = b_out + ff_hidden_dim;
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using DF = hn::ScalableTag<float>;
|
|
DF df;
|
|
for (size_t i = 0; i < ff_hidden_dim; i += Lanes(df)) {
|
|
const auto y = Load(df, f_out + i);
|
|
const auto x = Load(df, f_out_mul + i);
|
|
const auto v = Load(df, b_out_gated + i);
|
|
hn::Store(hn::Mul(v, Gelu(df, y)), df, b_out_mul + i);
|
|
hn::Store(hn::Mul(v, hn::Mul(x, DGelu(df, y))), df, b_out + i);
|
|
}
|
|
}
|
|
|
|
MatMulVJP(weights.gating_einsum_w.Packed(),
|
|
forward.bf_pre_ffw_rms_out.Packed(), backward.ffw_hidden.Packed(),
|
|
model_dim, ff_hidden_dim * 2, num_tokens,
|
|
grad.gating_einsum_w.Packed(), backward.bf_pre_ffw_rms_out.Packed(),
|
|
pool);
|
|
RMSNormVJP(
|
|
weights.pre_ffw_norm_scale.Packed(), forward.attention_out.Packed(),
|
|
backward.bf_pre_ffw_rms_out.Packed(), model_dim, num_tokens,
|
|
grad.pre_ffw_norm_scale.Packed(), backward.attention_out.Packed(), pool);
|
|
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
AddFrom(next_layer_grad + pos * model_dim,
|
|
backward.attention_out.Packed() + pos * model_dim, model_dim);
|
|
}
|
|
|
|
ZeroInit(backward.qkv);
|
|
|
|
MultiHeadMatMulVJP(
|
|
weights.attn_vec_einsum_w.Packed(), forward.att_out.Packed(),
|
|
backward.attention_out.Packed(), heads, qkv_dim, model_dim, num_tokens,
|
|
grad.attn_vec_einsum_w.Packed(), backward.att_out.Packed(), pool);
|
|
|
|
for (size_t head = 0; head < heads; ++head) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t aoffset = head * seq_len + pos * heads * seq_len;
|
|
const float* HWY_RESTRICT f_head_att = forward.att.Packed() + aoffset;
|
|
const float* HWY_RESTRICT b_att_out =
|
|
backward.att_out.Packed() + (pos * heads + head) * qkv_dim;
|
|
float* HWY_RESTRICT b_head_att = backward.att.Packed() + aoffset;
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
const size_t v2offs = (pos2 * (heads + 2) + heads + 1) * qkv_dim;
|
|
const float* HWY_RESTRICT f_v2 = forward.qkv.Packed() + v2offs;
|
|
float* HWY_RESTRICT b_v2 = backward.qkv.Packed() + v2offs;
|
|
b_head_att[pos2] = Dot(b_att_out, f_v2, qkv_dim);
|
|
MulByConstAndAdd(f_head_att[pos2], b_att_out, b_v2, qkv_dim);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t head = 0; head < heads; ++head) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t aoffset = head * seq_len + pos * heads * seq_len;
|
|
const float* HWY_RESTRICT f_head_att = forward.att.Packed() + aoffset;
|
|
float* HWY_RESTRICT b_head_att = backward.att.Packed() + aoffset;
|
|
SoftmaxVJP(f_head_att, b_head_att, pos + 1);
|
|
}
|
|
}
|
|
|
|
for (size_t head = 0; head < heads; ++head) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
const size_t qoffs = (pos * (heads + 2) + head) * qkv_dim;
|
|
const size_t aoffs = head * seq_len + pos * heads * seq_len;
|
|
const float* HWY_RESTRICT f_q = forward.qkv.Packed() + qoffs;
|
|
const float* HWY_RESTRICT b_head_att = backward.att.Packed() + aoffs;
|
|
float* HWY_RESTRICT b_q = backward.qkv.Packed() + qoffs;
|
|
for (size_t pos2 = 0; pos2 <= pos; ++pos2) {
|
|
const size_t k2offs = (pos2 * (heads + 2) + heads) * qkv_dim;
|
|
const float* HWY_RESTRICT f_k2 = forward.qkv.Packed() + k2offs;
|
|
float* HWY_RESTRICT b_k2 = backward.qkv.Packed() + k2offs;
|
|
MulByConstAndAdd(b_head_att[pos2], f_k2, b_q, qkv_dim);
|
|
MulByConstAndAdd(b_head_att[pos2], f_q, b_k2, qkv_dim);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int pos = 0; pos < static_cast<int>(num_tokens); ++pos) {
|
|
float* HWY_RESTRICT b_kv =
|
|
backward.qkv.Packed() + (pos * (heads + 2) + heads) * qkv_dim;
|
|
Rope(b_kv, qkv_dim, inv_timescale.Const(), -pos);
|
|
}
|
|
|
|
for (size_t head = 0; head < heads; ++head) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
float* HWY_RESTRICT b_q =
|
|
backward.qkv.Packed() + (pos * (heads + 2) + head) * qkv_dim;
|
|
MulByConst(query_scale, b_q, qkv_dim);
|
|
Rope(b_q, qkv_dim, inv_timescale.Const(), -pos);
|
|
}
|
|
}
|
|
|
|
MatMulVJP(weights.qkv_einsum_w.Packed(), forward.pre_att_rms_out.Packed(),
|
|
backward.qkv.Packed(), model_dim, (heads + 2) * qkv_dim, num_tokens,
|
|
grad.qkv_einsum_w.Packed(), backward.pre_att_rms_out.Packed(),
|
|
pool);
|
|
RMSNormVJP(weights.pre_attention_norm_scale.Packed(), forward.input.Packed(),
|
|
backward.pre_att_rms_out.Packed(), model_dim, num_tokens,
|
|
grad.pre_attention_norm_scale.Packed(), backward.input.Packed(),
|
|
pool);
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
AddFrom(backward.attention_out.Packed() + pos * model_dim,
|
|
backward.input.Packed() + pos * model_dim, model_dim);
|
|
}
|
|
}
|
|
|
|
static HWY_NOINLINE void SoftcapVJP(const float cap,
|
|
const float* HWY_RESTRICT forward,
|
|
float* HWY_RESTRICT backward,
|
|
const size_t size) {
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using D = hn::ScalableTag<float>;
|
|
const D d;
|
|
|
|
const auto one = hn::Set(d, 1.0f);
|
|
const auto vcap = hn::Set(d, cap);
|
|
const auto vinv_cap = hn::Div(hn::Set(d, 1.0f), vcap);
|
|
hn::Transform1(d, backward, size, forward,
|
|
[&](const auto d, const auto v, const auto y) HWY_ATTR {
|
|
const auto scaled = hn::Mul(vinv_cap, y); // = tanh
|
|
return hn::Mul(v, hn::Sub(one, hn::Mul(scaled, scaled)));
|
|
});
|
|
}
|
|
|
|
static HWY_NOINLINE void CrossEntropyLossGrad(
|
|
const float* HWY_RESTRICT x, float* HWY_RESTRICT grad,
|
|
const Prompt& prompt, size_t vocab_size) {
|
|
HWY_ASSERT(!prompt.tokens.empty());
|
|
const float scaling = -1.0 / std::log(2.0);
|
|
size_t num_tokens = prompt.tokens.size() - 1;
|
|
hwy::ZeroBytes(grad, num_tokens * vocab_size * sizeof(grad[0]));
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
if (pos + 1 < prompt.context_size) {
|
|
continue;
|
|
}
|
|
const int next_token = prompt.tokens[pos + 1];
|
|
grad[pos * vocab_size + next_token] =
|
|
scaling / x[pos * vocab_size + next_token];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void CrossEntropyLossBackwardPassInl(const Prompt& prompt,
|
|
const ModelWeightsPtrs<T>& weights,
|
|
const ForwardPass<float>& forward,
|
|
ModelWeightsPtrs<T>& grad,
|
|
ForwardPass<float>& backward,
|
|
RowVectorBatch<float>& inv_timescale,
|
|
hwy::ThreadPool& pool) {
|
|
const ModelConfig& config = weights.weights_config;
|
|
const size_t kVocabSize = config.vocab_size;
|
|
const size_t model_dim = config.model_dim;
|
|
const size_t kLayers = config.layer_configs.size();
|
|
const float kEmbScaling = EmbeddingScaling(model_dim);
|
|
HWY_ASSERT(!config.absolute_pe);
|
|
HWY_ASSERT(config.layer_configs[0].post_norm == PostNormType::None);
|
|
HWY_ASSERT(config.layer_configs[0].kv_heads == 1);
|
|
|
|
HWY_DASSERT(prompt.context_size > 0);
|
|
HWY_DASSERT(prompt.context_size < prompt.tokens.size());
|
|
const size_t num_tokens = prompt.tokens.size() - 1;
|
|
|
|
CrossEntropyLossGrad(forward.probs.Packed(), backward.logits.Packed(), prompt,
|
|
kVocabSize);
|
|
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
SoftmaxVJP(forward.probs.Packed() + pos * kVocabSize,
|
|
backward.logits.Packed() + pos * kVocabSize, kVocabSize);
|
|
}
|
|
|
|
if (config.final_cap > 0.0f) {
|
|
for (size_t pos = 0; pos < num_tokens; ++pos) {
|
|
SoftcapVJP(config.final_cap, forward.logits.Packed() + pos * kVocabSize,
|
|
backward.logits.Packed() + pos * kVocabSize, kVocabSize);
|
|
}
|
|
}
|
|
|
|
MatMulVJP(weights.embedder_input_embedding.Packed(),
|
|
forward.final_norm_output.Packed(), backward.logits.Packed(),
|
|
model_dim, kVocabSize, num_tokens,
|
|
grad.embedder_input_embedding.Packed(),
|
|
backward.final_norm_output.Packed(), pool);
|
|
|
|
RMSNormVJP(weights.final_norm_scale.Packed(),
|
|
forward.final_layer_output.Packed(),
|
|
backward.final_norm_output.Packed(), model_dim, num_tokens,
|
|
grad.final_norm_scale.Packed(),
|
|
backward.final_layer_output.Packed(), pool);
|
|
|
|
for (int layer = static_cast<int>(kLayers) - 1; layer >= 0; --layer) {
|
|
auto layer_config = config.layer_configs[layer];
|
|
// TODO(szabadka) Implement Griffin layer vjp.
|
|
HWY_ASSERT(layer_config.type == LayerAttentionType::kGemma);
|
|
float* next_layer_grad = layer + 1 < kLayers
|
|
? backward.layers[layer + 1].input.Packed()
|
|
: backward.final_layer_output.Packed();
|
|
LayerVJP(*weights.GetLayer(layer), forward.layers[layer], next_layer_grad,
|
|
num_tokens, *grad.GetLayer(layer), backward.layers[layer],
|
|
inv_timescale, pool);
|
|
}
|
|
|
|
InputEmbeddingVJP(weights.embedder_input_embedding.Packed(), prompt.tokens,
|
|
kEmbScaling, backward.layers[0].input.Packed(),
|
|
grad.embedder_input_embedding.Packed(), model_dim);
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-readability-namespace-comments)
|
|
} // namespace HWY_NAMESPACE
|
|
} // namespace gcpp
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#endif // NOLINT
|