gemma.cpp/gemma/tensor_stats.cc

299 lines
11 KiB
C++

// Copyright 2025 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gemma/tensor_stats.h"
#if GCPP_TENSOR_STATS
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <atomic>
#include <cmath>
#include <memory>
#include "io/io.h"
#include "util/mat.h"
#include "util/threading_context.h"
#include "util/zones.h"
#include "hwy/profiler.h" // StringTable
// Compiles this file for multiple architectures via "foreach_target.h", to
// which we pass the filename via macro 'argument'.
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "gemma/tensor_stats.cc" // NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
// After highway.h
#include "compression/compress-inl.h"
#include "ops/dot-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
float Correlation(const float* x, size_t num) {
double sum = 0.0;
for (size_t i = 0; i < num; ++i) {
sum += x[i];
}
const double mean = sum / static_cast<double>(num);
double numerator = 0.0;
double sum_sq_current = 0.0;
double sum_sq_next = 0.0;
for (size_t i = 0; i < num - 1; ++i) {
const double diff_current = static_cast<double>(x[i]) - mean;
const double diff_next = static_cast<double>(x[i + 1]) - mean;
numerator += diff_current * diff_next;
sum_sq_current += diff_current * diff_current;
sum_sq_next += diff_next * diff_next;
}
if (sum_sq_current == 0.0 || sum_sq_next == 0.0) return 0.0f;
const double denominator = std::sqrt(sum_sq_current * sum_sq_next);
const float corr = static_cast<float>(numerator / denominator);
HWY_DASSERT(-1.0f <= corr && corr <= 1.0f);
return corr;
}
// Only write tensor data the first time it is encountered per layer. This is
// a concurrent string+layer -> flag map which avoids std::mutex (incompatible
// with fibers). We use a string table to index into per-layer atomic flags.
static bool ShouldWrite(const char* name, size_t layer_idx) {
constexpr size_t kMaxNames = 128;
constexpr size_t kMaxLayers = 128;
HWY_DASSERT(layer_idx < kMaxLayers);
static hwy::StringTable<kMaxNames> s_table;
const size_t name_idx = s_table.Add(name);
static std::atomic_flag flags[kMaxNames * kMaxLayers] = {};
return !flags[name_idx * kMaxLayers + layer_idx].test_and_set(
std::memory_order_acq_rel);
}
std::unique_ptr<File> MaybeOpenFile(size_t layer_idx, const MatPtr& type_erased,
const Path& tensor_output) {
if (tensor_output.Empty()) return nullptr;
if (!ShouldWrite(type_erased.Name(), layer_idx)) return nullptr;
char path[1024];
snprintf(path, sizeof(path), "%s/%s_L%02zu_%zux%zu_%s.bin",
tensor_output.path.c_str(), type_erased.Name(), layer_idx,
type_erased.Rows(), type_erased.Cols(),
TypeName(type_erased.GetType()));
return OpenFileOrAbort(Path(path), "wb");
}
void MaybeWriteRow(const std::unique_ptr<File>& file, const MatPtr& type_erased,
size_t row_idx) {
if (!file) return;
const size_t bytes_per_row = type_erased.Cols() * type_erased.ElementBytes();
file->Write(type_erased.RowBytes(row_idx), bytes_per_row,
bytes_per_row * row_idx);
}
constexpr size_t kGroupSize = 128; // subchannel
void QuantizeGroup(const float* HWY_RESTRICT in,
TensorStatsAccumulator& my_stats) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<float> df;
using VF = hn::Vec<decltype(df)>;
using MF = hn::Mask<decltype(df)>;
const hn::ScalableTag<double> dd;
using VD = hn::Vec<decltype(dd)>;
HWY_LANES_CONSTEXPR size_t NF = hn::Lanes(df);
HWY_ALIGN float enc[kGroupSize];
HWY_ALIGN float dec[kGroupSize];
HWY_ALIGN float all_snr[kGroupSize];
HWY_DASSERT(kGroupSize % NF == 0); // No remainder handling required.
const VF k0 = hn::Zero(df);
const VF k1 = hn::Set(df, 1.0f);
// Scan for min/max for quantization.
VF vmin = hn::Set(df, hwy::HighestValue<float>());
VF vmax = hn::Set(df, hwy::LowestValue<float>());
for (size_t i = 0; i < kGroupSize; i += NF) {
const VF v = hn::Load(df, in + i);
vmin = hn::Min(vmin, v);
vmax = hn::Max(vmax, v);
}
const float min = hn::ReduceMin(df, vmin);
const float max = hn::ReduceMax(df, vmax);
// Avoid division by zero during quantization.
if (max == min) return;
// Distortion stats.
VF vsum_err = hn::Zero(df);
VD sum_log_snr0 = hn::Zero(dd);
VD sum_log_snr1 = hn::Zero(dd);
size_t num_snr = 0;
// Unclipped asymmetric quantization (for activations).
const VF scale = hn::Set(df, 255.0f / (max - min));
const VF inv_scale = hn::Div(k1, scale);
const VF zeropoint = hn::Sub(hn::Round(hn::Mul(hn::Set(df, -min), scale)),
hn::Set(df, 128.0f));
const VF dq_sub = hn::Mul(zeropoint, inv_scale); // For MulSub.
for (size_t i = 0; i < kGroupSize; i += NF) {
const VF v = hn::Load(df, in + i);
const VF q = hn::Round(hn::MulAdd(v, scale, zeropoint));
hn::Store(q, df, enc + i);
// Dequantize.
const VF d = hn::MulSub(q, inv_scale, dq_sub);
hn::Store(d, df, dec + i);
const VF err = hn::AbsDiff(v, d); // L1
vsum_err = hn::Add(vsum_err, err);
// For preventing division by zero. However, we still want to
// clamp snr because it could be very high (>1E3 when most
// elements are lossless).
const MF has_err = hn::Gt(err, k0);
const VF rel = hn::MaskedDivOr(k0, has_err, hn::Abs(v), err);
// SNR = 1 + abs/L1, with cap on the latter term.
const VF snr = hn::Add(k1, hn::Min(rel, hn::Set(df, 300.f)));
hn::Store(snr, df, all_snr + i);
// Where `has_err` is false, `snr` elements are 1 and log(1) is zero, hence
// they do not affect sum_log. However, very high errors also result in
// snr=1, which drags down the average because `sum_log` is increased.
num_snr += hn::CountTrue(df, has_err);
const VD log_snr0 = hn::Log(dd, hn::PromoteLowerTo(dd, snr));
const VD log_snr1 = hn::Log(dd, hn::PromoteUpperTo(dd, snr));
sum_log_snr0 = hn::Add(sum_log_snr0, log_snr0);
sum_log_snr1 = hn::Add(sum_log_snr1, log_snr1);
}
const float sum_err = hn::ReduceSum(df, vsum_err);
const float avg_L1 = sum_err / static_cast<float>(kGroupSize);
const double sum_log = hn::ReduceSum(dd, hn::Add(sum_log_snr0, sum_log_snr1));
// SNR >= 1, hence log >= 0.
HWY_ASSERT(sum_log >= 0.0);
if (num_snr == 0) { // Avoid division by zero.
// It can happen that dequantization is lossless, i.e. SNR is
// infinite; skip such groups.
HWY_ASSERT(sum_err == 0.0f);
return;
}
// Signal to noise ratio (Shannon's channel capacity, NOT the
// L2-based and logarithmic PSNR)
const float snr = std::exp(sum_log / static_cast<double>(num_snr));
my_stats.NotifyGroup(avg_L1, snr);
}
// First dispatch to the type, then parallel over rows, then vectorized
// decompress and Notify for each value.
void UpdateStatsT(TensorStats& stats, size_t layer_idx,
const MatPtr& type_erased, ThreadingContext& ctx, int flags,
size_t cluster_idx, Parallelism parallelism) {
std::unique_ptr<File> file =
MaybeOpenFile(layer_idx, type_erased, ctx.tensor_output);
if ((flags & kTensorStatsIsWeight) && layer_idx != 0) {
// Still compute stats, but remember not to print them.
stats.Get(layer_idx, 0).DoNotPrint();
}
CallUpcasted(&type_erased, [&](const auto* mat) {
const size_t cols = mat->Cols();
ParallelFor(
parallelism, mat->Rows(), ctx, cluster_idx, Callers::kTensorStats,
[&](size_t row_idx, size_t global_idx) {
GCPP_ZONE(ctx, global_idx, Zones::kGenStats);
auto* HWY_RESTRICT row = mat->Row(row_idx);
MaybeWriteRow(file, type_erased, row_idx);
using Packed = hwy::RemoveCvRef<decltype(*row)>;
PackedSpan<Packed> packed(const_cast<Packed*>(row), cols);
TensorStatsAccumulator& my_stats = stats.Get(layer_idx, global_idx);
my_stats.NotifyCond(ConditionNumber(row, cols));
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<float> df;
using VF = hn::Vec<decltype(df)>;
HWY_LANES_CONSTEXPR size_t NF = hn::Lanes(df);
HWY_ALIGN float buf[kGroupSize];
size_t buf_filled = 0;
size_t packed_ofs = 0;
if (cols >= 2 * NF) {
for (; packed_ofs <= cols - 2 * NF; packed_ofs += 2 * NF) {
VF v0, v1;
Decompress2(df, packed, packed_ofs, v0, v1);
hn::Store(v0, df, buf + buf_filled);
hn::Store(v1, df, buf + buf_filled + NF);
buf_filled += 2 * NF;
if (buf_filled == kGroupSize) {
QuantizeGroup(buf, my_stats);
for (size_t i = 0; i < kGroupSize; ++i) {
my_stats.Notify(buf[i], row_idx, packed_ofs + i);
}
my_stats.NotifyCorr(Correlation(buf, kGroupSize));
buf_filled = 0;
}
}
}
// Zero to two vectors remaining.
for (; packed_ofs < cols; packed_ofs += NF) {
const size_t remaining = HWY_MIN(NF, cols - packed_ofs);
DecompressAndZeroPad(df, packed, packed_ofs, buf, remaining);
// Skip QuantizeGroup because it requires full groups.
for (size_t i = 0; i < remaining; ++i) {
my_stats.Notify(buf[i], row_idx, packed_ofs + i);
}
my_stats.NotifyCorr(Correlation(buf, remaining));
}
});
});
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_EXPORT(UpdateStatsT);
// Must reside in .cc file so that we can #include compress-inl.h.
void TensorStats::Notify(size_t layer_idx, const MatPtr& type_erased,
ThreadingContext& ctx, int flags, size_t cluster_idx,
Parallelism parallelism) {
// Ignore empty tensors.
if (type_erased.GetType() == Type::kUnknown || type_erased.Cols() == 0) {
return;
}
HWY_DYNAMIC_DISPATCH(UpdateStatsT)(*this, layer_idx, type_erased, ctx, flags,
cluster_idx, parallelism);
}
} // namespace gcpp
#endif // HWY_ONCE
#endif // GCPP_TENSOR_STATS