gemma.cpp/gemma/weights.h

652 lines
26 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
#define THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_
#include <stddef.h>
#include <complex>
#include <cstdio>
#include <memory>
#include <random>
#include <string>
#include <unordered_set>
#include <vector>
// TODO: remove compress-inl.h and highway.h when no longer required - i.e.
// necessary functionality in Rehape() is moved to weights.cc.
#include "compression/compress-inl.h"
#include "compression/compress.h"
#include "compression/shared.h"
#include "gemma/common.h"
#include "gemma/configs.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/highway.h"
namespace gcpp {
// Different tensors need to appear in a ForEachTensor, according to what is
// happening.
enum class ForEachType {
// Under normal circumstances, when not initializing or loading, we can
// include all tensors and ignore the null ones.
kIgnoreNulls,
// If there is a table of contents, we can include all tensors.
kLoadWithToc,
// There is no table of contents, so we have to be careful to only include
// tensors that are actually present.
kLoadNoToc,
// We need to initialize all tensors needed when there is no table of
// contents. This differs from kLoadNoToc in that we need to include any
// tensor that is allocated but not loaded directly from file.
kInitNoToc,
};
template <class Weight>
struct LayerWeightsPtrs {
// Large data is constructed separately.
explicit LayerWeightsPtrs(const LayerConfig& config)
: attn_vec_einsum_w("att_ein", config.model_dim,
config.heads * config.qkv_dim),
qkv_einsum_w("qkv_ein",
(config.heads + 2 * config.kv_heads) * config.qkv_dim,
config.model_dim),
qkv_einsum_w1("qkv1_w", config.heads * config.qkv_dim,
config.model_dim),
qkv_einsum_w2("qkv2_w", 2 * config.kv_heads * config.qkv_dim,
config.model_dim),
attention_output_biases(
"attn_ob", 1,
config.softmax_attn_output_biases ? config.model_dim : 0),
griffin(
{.linear_x_w = {"gr_lin_x_w", config.griffin_dim,
config.griffin_dim},
.linear_x_biases = {"gr_lin_x_b", 1, config.griffin_dim},
.linear_y_w = {"gr_lin_y_w", config.griffin_dim,
config.griffin_dim},
.linear_y_biases = {"gr_lin_y_b", 1, config.griffin_dim},
.linear_out_w = {"gr_lin_out_w", config.griffin_dim,
config.griffin_dim},
.linear_out_biases = {"gr_lin_out_b", 1, config.griffin_dim},
.conv_w = {"gr_conv_w", config.conv1d_width, config.griffin_dim},
.conv_biases = {"gr_conv_b", 1, config.griffin_dim},
.gate_w = {"gr_gate_w", 2 * config.griffin_dim,
config.griffin_dim / config.heads},
.gate_biases = {"gr_gate_b", 1, config.griffin_dim * 2},
.a = {"gr_a", 1, config.griffin_dim}}),
// MultiHeadDotProductAttention.
vit({.attn_out_w = {"attn_out_w", config.heads * config.qkv_dim,
config.model_dim},
.attn_out_b = {"attn_out_b", 1, config.model_dim},
.qkv_einsum_w = {"qkv_ein_w",
(config.heads + 2 * config.kv_heads) *
config.qkv_dim,
config.model_dim},
.qkv_einsum_b = {"qkv_ein_b", (config.heads + 2 * config.kv_heads),
config.qkv_dim},
.linear_0_w = {"linear_0_w", config.ff_hidden_dim,
config.model_dim},
.linear_0_b = {"linear_0_b", 1, config.ff_hidden_dim},
.linear_1_w = {"linear_1_w", config.model_dim,
config.ff_hidden_dim},
.linear_1_b = {"linear_1_b", 1, config.model_dim},
.layer_norm_0_bias = {"ln_0_bias", 1, config.model_dim},
.layer_norm_0_scale = {"ln_0_scale", 1, config.model_dim},
.layer_norm_1_bias = {"ln_1_bias", 1, config.model_dim},
.layer_norm_1_scale = {"ln_1_scale", 1, config.model_dim}}),
gating_einsum_w("gating_ein", 2 * config.ff_hidden_dim,
config.model_dim),
gating_einsum_w1("gating1_w", config.ff_hidden_dim, config.model_dim),
gating_einsum_w2("gating2_w", config.ff_hidden_dim, config.model_dim),
linear_w("linear_w", config.model_dim, config.ff_hidden_dim),
pre_attention_norm_scale("pre_att_ns", 1, config.model_dim),
pre_ffw_norm_scale("pre_ff_ns", 1, config.model_dim),
post_attention_norm_scale(
"post_att_ns", 1,
config.post_norm == PostNormType::Scale ? config.model_dim : 0),
post_ffw_norm_scale(
"post_ff_ns", 1,
config.post_norm == PostNormType::Scale ? config.model_dim : 0),
ffw_gating_biases("ffw_gat_b", 1,
config.ff_biases ? 2 * config.ff_hidden_dim : 0),
ffw_output_biases("ffw_out_b", 1,
config.ff_biases ? config.model_dim : 0),
att_weights("att_w", config.model_dim, config.heads * config.qkv_dim),
layer_config(config) {}
~LayerWeightsPtrs() = default;
// If weights are f32, also f32; otherwise at least bf16. Useful for ops that
// do not yet support smaller compressed types, or require at least bf16. When
// weights are f32, we also want such tensors to be f32.
// If weights are complex, this is also complex.
using WeightF32OrBF16 =
hwy::If<hwy::IsSame<Weight, std::complex<double>>(), std::complex<double>,
hwy::If<hwy::IsSame<Weight, double>(), double,
hwy::If<IsF32<Weight>(), float, BF16>>>;
template <class T>
using ArrayT = MatPtrT<T>;
ArrayT<Weight> attn_vec_einsum_w;
// qkv_einsum_w holds 2 different matrices, which may be separated out.
// On loading, which is used depends on what is in the file.
// At inference, the one with a non-null ptr is used.
ArrayT<Weight> qkv_einsum_w;
ArrayT<Weight> qkv_einsum_w1;
ArrayT<Weight> qkv_einsum_w2;
ArrayT<float> attention_output_biases;
struct {
ArrayT<Weight> linear_x_w;
ArrayT<float> linear_x_biases;
ArrayT<Weight> linear_y_w;
ArrayT<float> linear_y_biases;
ArrayT<Weight> linear_out_w;
ArrayT<float> linear_out_biases;
ArrayT<float> conv_w;
ArrayT<float> conv_biases;
ArrayT<Weight> gate_w;
ArrayT<float> gate_biases;
ArrayT<float> a;
} griffin;
struct {
// MultiHeadDotProductAttention.
ArrayT<WeightF32OrBF16> attn_out_w;
ArrayT<float> attn_out_b;
ArrayT<WeightF32OrBF16> qkv_einsum_w;
ArrayT<float> qkv_einsum_b;
// MlpBlock.
ArrayT<WeightF32OrBF16> linear_0_w;
ArrayT<float> linear_0_b;
ArrayT<WeightF32OrBF16> linear_1_w;
ArrayT<float> linear_1_b;
// LayerNorm.
ArrayT<WeightF32OrBF16> layer_norm_0_bias;
ArrayT<WeightF32OrBF16> layer_norm_0_scale;
ArrayT<WeightF32OrBF16> layer_norm_1_bias;
ArrayT<WeightF32OrBF16> layer_norm_1_scale;
} vit;
// gating_einsum_w holds 2 different matrices, which may be separated out.
// On loading, which is used depends on what is in the file.
// At inference, the one with a non-null ptr is used.
ArrayT<Weight> gating_einsum_w;
ArrayT<Weight> gating_einsum_w1;
ArrayT<Weight> gating_einsum_w2;
ArrayT<Weight> linear_w;
// We don't yet have an RMSNorm that accepts all Weight.
ArrayT<WeightF32OrBF16> pre_attention_norm_scale;
ArrayT<WeightF32OrBF16> pre_ffw_norm_scale;
ArrayT<WeightF32OrBF16> post_attention_norm_scale;
ArrayT<WeightF32OrBF16> post_ffw_norm_scale;
ArrayT<float> ffw_gating_biases;
ArrayT<float> ffw_output_biases;
// Reshaped attention; not loaded from disk via ForEachTensor.
ArrayT<Weight> att_weights;
const LayerConfig& layer_config;
// Initializes att_weights from attn_vec_einsum_w, hence this must be called
// after loading weights via ForEachTensor.
// TODO: update compression/convert_weights to bake this in.
// TODO(janwas): shift to weights.cc.
void Reshape(MatStorage* storage) {
if (attn_vec_einsum_w.data() == nullptr) return;
const size_t model_dim = layer_config.model_dim;
const size_t heads = layer_config.heads;
const size_t qkv_dim = layer_config.qkv_dim;
// TODO: implement a CompressTraits::Copy for NUQ.
// static_assert(!hwy::IsSame<Weight, NuqStream>());
// Reshape [kHeads, kModelDim, kQKVDim] to [kModelDim, kHeads * kQKVDim].
if (storage != nullptr) {
storage->Allocate();
att_weights.SetPtr(*storage);
}
if (hwy::IsSame<Weight, NuqStream>()) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<float> df;
hwy::AlignedFreeUniquePtr<float[]> attn_vec_einsum_w_tmp =
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
hwy::AlignedFreeUniquePtr<float[]> att_weights_tmp =
hwy::AllocateAligned<float>(model_dim * heads * qkv_dim);
HWY_NAMESPACE::DecompressAndZeroPad(
df, MakeSpan(attn_vec_einsum_w.data(), model_dim * heads * qkv_dim),
0, attn_vec_einsum_w_tmp.get(), model_dim * heads * qkv_dim);
for (size_t m = 0; m < model_dim; ++m) {
float* HWY_RESTRICT out_row =
att_weights_tmp.get() + m * heads * qkv_dim;
for (size_t h = 0; h < heads; ++h) {
hwy::CopyBytes(attn_vec_einsum_w_tmp.get() + h * model_dim * qkv_dim +
m * qkv_dim,
out_row + h * qkv_dim, qkv_dim * sizeof(float));
}
}
CompressWorkingSet work;
hwy::ThreadPool pool(0);
HWY_NAMESPACE::Compress(
att_weights_tmp.get(), model_dim * heads * qkv_dim, work,
MakeSpan(att_weights.data(), model_dim * heads * qkv_dim),
/*packed_ofs=*/0, pool);
return;
}
for (size_t m = 0; m < model_dim; ++m) {
Weight* HWY_RESTRICT out_row = att_weights.data() + m * heads * qkv_dim;
for (size_t h = 0; h < heads; ++h) {
hwy::CopyBytes(
attn_vec_einsum_w.data() + h * model_dim * qkv_dim + m * qkv_dim,
out_row + h * qkv_dim, qkv_dim * sizeof(Weight));
}
}
att_weights.set_scale(attn_vec_einsum_w.scale());
}
// Used by ForEachTensor for per-layer tensors.
#define GEMMA_CALL_FUNC(member) \
{ \
for (int i = 0; i < ptrs.size(); ++i) { \
tensors[i] = &ptrs[i]->member; \
} \
if (tensors[0]->Ptr() != nullptr || fet != ForEachType::kIgnoreNulls) { \
func(ptrs[0]->member.CacheName(layer_idx, sep, sep_index).c_str(), \
hwy::Span<MatPtr*>(tensors, ptrs.size())); \
} \
}
template <class Func>
static void ForEachTensor(const std::vector<LayerWeightsPtrs<Weight>*>& ptrs,
int layer_idx, ForEachType fet, Func func,
char sep = ' ', int sep_index = -1) {
MatPtr* tensors[ptrs.size()];
auto type = ptrs[0]->layer_config.type;
if (type == LayerAttentionType::kVit) {
// MHA.
GEMMA_CALL_FUNC(vit.attn_out_w);
GEMMA_CALL_FUNC(vit.attn_out_b);
GEMMA_CALL_FUNC(vit.qkv_einsum_w);
GEMMA_CALL_FUNC(vit.qkv_einsum_b);
// MlpBlock.
GEMMA_CALL_FUNC(vit.linear_0_w);
GEMMA_CALL_FUNC(vit.linear_0_b);
GEMMA_CALL_FUNC(vit.linear_1_w);
GEMMA_CALL_FUNC(vit.linear_1_b);
// LayerNorm.
GEMMA_CALL_FUNC(vit.layer_norm_0_bias);
GEMMA_CALL_FUNC(vit.layer_norm_0_scale);
GEMMA_CALL_FUNC(vit.layer_norm_1_bias);
GEMMA_CALL_FUNC(vit.layer_norm_1_scale);
return;
}
if (type == LayerAttentionType::kGemma) {
if (fet != ForEachType::kLoadNoToc) {
GEMMA_CALL_FUNC(att_weights);
}
if (fet == ForEachType::kInitNoToc || fet == ForEachType::kLoadNoToc ||
fet == ForEachType::kIgnoreNulls) {
GEMMA_CALL_FUNC(attn_vec_einsum_w);
}
GEMMA_CALL_FUNC(qkv_einsum_w);
if (fet == ForEachType::kIgnoreNulls ||
fet == ForEachType::kLoadWithToc) {
// The unwanted ones will be null or not in the toc.
GEMMA_CALL_FUNC(qkv_einsum_w1);
GEMMA_CALL_FUNC(qkv_einsum_w2);
}
} else {
GEMMA_CALL_FUNC(griffin.linear_x_w);
GEMMA_CALL_FUNC(griffin.linear_x_biases);
GEMMA_CALL_FUNC(griffin.linear_y_w);
GEMMA_CALL_FUNC(griffin.linear_y_biases);
GEMMA_CALL_FUNC(griffin.linear_out_w);
GEMMA_CALL_FUNC(griffin.linear_out_biases);
GEMMA_CALL_FUNC(griffin.conv_w);
GEMMA_CALL_FUNC(griffin.conv_biases);
GEMMA_CALL_FUNC(griffin.gate_w);
GEMMA_CALL_FUNC(griffin.gate_biases);
GEMMA_CALL_FUNC(griffin.a);
}
GEMMA_CALL_FUNC(gating_einsum_w);
if (fet == ForEachType::kIgnoreNulls || fet == ForEachType::kLoadWithToc) {
// The unwanted ones will be null or not in the toc.
GEMMA_CALL_FUNC(gating_einsum_w1);
GEMMA_CALL_FUNC(gating_einsum_w2);
}
GEMMA_CALL_FUNC(linear_w);
GEMMA_CALL_FUNC(pre_attention_norm_scale);
GEMMA_CALL_FUNC(pre_ffw_norm_scale);
if (ptrs[0]->layer_config.post_norm == PostNormType::Scale) {
GEMMA_CALL_FUNC(post_attention_norm_scale);
GEMMA_CALL_FUNC(post_ffw_norm_scale);
}
if (ptrs[0]->layer_config.ff_biases) {
GEMMA_CALL_FUNC(ffw_gating_biases);
GEMMA_CALL_FUNC(ffw_output_biases);
}
if (ptrs[0]->layer_config.softmax_attn_output_biases &&
type == LayerAttentionType::kGemma) {
GEMMA_CALL_FUNC(attention_output_biases);
}
}
// Sets all the tensors in the layer to zero. Memory must have been allocated.
void ZeroInit(int layer_idx) {
ForEachTensor({this}, layer_idx, ForEachType::kIgnoreNulls,
[](const char*, hwy::Span<MatPtr*> tensors) {
tensors[0]->ZeroInit();
});
}
// Allocates memory for all the tensors in the layer.
// Note that this is slow and only used for a stand-alone layer.
void Allocate(std::vector<MatStorage>& layer_storage) {
ForEachTensor(
{this}, /*layer_idx=*/0, ForEachType::kInitNoToc,
[&layer_storage](const char* name, hwy::Span<MatPtr*> tensors) {
layer_storage.emplace_back(*tensors[0]);
layer_storage.back().Allocate();
tensors[0]->SetPtr(layer_storage.back());
});
}
};
template <class Weight>
struct ModelWeightsPtrs {
ModelWeightsPtrs(const ModelConfig& config, hwy::ThreadPool& pool)
: embedder_input_embedding("c_embedding", config.vocab_size,
config.model_dim),
final_norm_scale("c_final_norm", 1, config.model_dim),
vit_encoder_norm_bias("enc_norm_bias", 1, config.vit_model_dim),
vit_encoder_norm_scale("enc_norm_scale", 1, config.vit_model_dim),
vit_img_embedding_bias("img_emb_bias", 1, config.vit_model_dim),
vit_img_embedding_kernel("img_emb_kernel",
config.patch_width * config.patch_width * 3,
config.vit_model_dim),
vit_img_pos_embedding("img_pos_emb", 256, config.vit_model_dim),
vit_img_head_bias("img_head_bias", 1, config.model_dim),
vit_img_head_kernel("img_head_kernel", config.model_dim,
config.vit_model_dim),
scale_names(config.scale_names),
weights_config(config) {
c_layers.reserve(config.layer_configs.size());
for (const auto& layer_config : config.layer_configs) {
c_layers.push_back(LayerWeightsPtrs<Weight>(layer_config));
}
for (const auto& layer_config : config.vit_layer_configs) {
vit_layers.push_back(LayerWeightsPtrs<Weight>(layer_config));
}
}
~ModelWeightsPtrs() = default;
using WeightF32OrBF16 = typename LayerWeightsPtrs<Weight>::WeightF32OrBF16;
using WeightF32OrInputT = hwy::If<hwy::IsSame<WeightF32OrBF16, BF16>(),
EmbedderInputT, WeightF32OrBF16>;
MatPtrT<WeightF32OrInputT> embedder_input_embedding;
MatPtrT<WeightF32OrBF16> final_norm_scale;
// Vit parts.
MatPtrT<WeightF32OrBF16> vit_encoder_norm_bias;
MatPtrT<WeightF32OrBF16> vit_encoder_norm_scale;
MatPtrT<float> vit_img_embedding_bias;
MatPtrT<WeightF32OrBF16> vit_img_embedding_kernel;
MatPtrT<float> vit_img_pos_embedding;
// The head maps from VitConfig::kModelDim (Vit final layer) to
// kModelDim (LLM input).
MatPtrT<float> vit_img_head_bias;
MatPtrT<WeightF32OrBF16> vit_img_head_kernel;
std::unordered_set<std::string> scale_names;
const ModelConfig& weights_config;
std::vector<LayerWeightsPtrs<Weight>> c_layers;
std::vector<LayerWeightsPtrs<Weight>> vit_layers;
// Called by weights.cc after Loading, before att_w has been allocated.
void AllocAndCopyWithTranspose(hwy::ThreadPool& pool,
std::vector<MatStorage>& model_storage) {
size_t storage_index = model_storage.size();
for (auto& layer : c_layers) {
model_storage.emplace_back(layer.att_weights);
}
pool.Run(0, c_layers.size(),
[this, &model_storage, storage_index](uint64_t layer,
size_t /*thread*/) {
GetLayer(layer)->Reshape(&model_storage[storage_index + layer]);
});
}
// For when the storage has already been allocated.
void CopyWithTranspose(hwy::ThreadPool& pool) {
pool.Run(0, c_layers.size(), [this](uint64_t layer, size_t /*thread*/) {
GetLayer(layer)->Reshape(nullptr);
});
}
void ZeroInit() {
embedder_input_embedding.ZeroInit();
final_norm_scale.ZeroInit();
for (size_t i = 0; i < c_layers.size(); ++i) {
c_layers[i].ZeroInit(i);
}
}
const LayerWeightsPtrs<Weight>* GetLayer(size_t layer) const {
return &c_layers[layer];
}
LayerWeightsPtrs<Weight>* GetLayer(size_t layer) { return &c_layers[layer]; }
const LayerWeightsPtrs<Weight>* GetVitLayer(size_t layer) const {
return &vit_layers[layer];
}
LayerWeightsPtrs<Weight>* GetVitLayer(size_t layer) {
return &vit_layers[layer];
}
void Allocate(std::vector<MatStorage>& model_storage, hwy::ThreadPool& pool) {
std::vector<MatPtr*> model_toc;
ForEachTensor(
{this}, ForEachType::kInitNoToc,
[&model_toc, &model_storage](const char*, hwy::Span<MatPtr*> tensors) {
model_toc.push_back(tensors[0]);
model_storage.emplace_back(*tensors[0]);
});
// Allocate in parallel using the pool.
pool.Run(0, model_toc.size(),
[&model_toc, &model_storage](uint64_t task, size_t /*thread*/) {
// model_storage may have had content before we started.
size_t idx = task + model_storage.size() - model_toc.size();
model_storage[idx].Allocate();
model_toc[task]->SetPtr(model_storage[idx]);
});
}
// Copies the data from other to *this.
void CopyFrom(const ModelWeightsPtrs<Weight>& other) {
ForEachTensor({this, const_cast<ModelWeightsPtrs<Weight>*>(&other)},
ForEachType::kIgnoreNulls,
[](const char*, hwy::Span<MatPtr*> tensors) {
hwy::CopyBytes(tensors[1]->Ptr(), tensors[0]->Ptr(),
tensors[1]->SizeBytes());
});
}
// If scales is empty, computes and returns the scale factors for the tensors,
// otherwise applies the scale factors to the tensors.
void GetOrApplyScales(std::vector<float>& scales) {
int scale_pos = 0;
ForEachTensor(
{this}, ForEachType::kIgnoreNulls,
[&scales, &scale_pos, this](const char*, hwy::Span<MatPtr*> tensors) {
if (this->scale_names.count(tensors[0]->Name())) {
if (scale_pos < scales.size()) {
tensors[0]->set_scale(scales[scale_pos]);
} else {
float scale = ScaleWeights(tensors[0]->data<float>(),
tensors[0]->NumElements());
scales.push_back(scale);
}
++scale_pos;
}
});
HWY_ASSERT(scale_pos == weights_config.num_tensor_scales);
}
template <class Func>
static void ForEachTensor(const std::vector<ModelWeightsPtrs<Weight>*>& ptrs,
ForEachType fet, Func func) {
std::vector<LayerWeightsPtrs<Weight>*> layers(ptrs.size());
std::vector<LayerWeightsPtrs<Weight>*> vit_layers(ptrs.size());
MatPtr* tensors[ptrs.size()];
// Variables used by GEMMA_CALL_FUNC.
int layer_idx = -1;
char sep = ' ';
int sep_index = -1;
GEMMA_CALL_FUNC(embedder_input_embedding);
GEMMA_CALL_FUNC(final_norm_scale);
if (ptrs[0]->weights_config.vit_layer_configs.size() > 0) {
// Vit parts.
GEMMA_CALL_FUNC(vit_encoder_norm_bias);
GEMMA_CALL_FUNC(vit_encoder_norm_scale);
GEMMA_CALL_FUNC(vit_img_embedding_bias);
GEMMA_CALL_FUNC(vit_img_embedding_kernel);
GEMMA_CALL_FUNC(vit_img_pos_embedding);
GEMMA_CALL_FUNC(vit_img_head_bias);
GEMMA_CALL_FUNC(vit_img_head_kernel);
}
for (int layer_idx = 0; layer_idx < ptrs[0]->c_layers.size(); ++layer_idx) {
for (int i = 0; i < ptrs.size(); ++i) {
layers[i] = ptrs[i]->GetLayer(layer_idx);
}
LayerWeightsPtrs<Weight>::ForEachTensor(layers, layer_idx, fet, func);
}
// Vit layers. Not supported for compress_weights.
if (ptrs[0]->weights_config.vit_layer_configs.size() > 0) {
for (int layer_idx = 0; layer_idx < ptrs[0]->vit_layers.size();
++layer_idx) {
auto type = ptrs[0]->vit_layers[layer_idx].layer_config.type;
HWY_ASSERT(type == LayerAttentionType::kVit);
for (int i = 0; i < ptrs.size(); ++i) {
vit_layers[i] = ptrs[i]->GetVitLayer(layer_idx);
}
LayerWeightsPtrs<Weight>::ForEachTensor(vit_layers, layer_idx, fet,
func);
}
}
}
};
#undef GEMMA_CALL_FUNC
// ----------------------------------------------------------------------------
// Interface
class ModelWeightsStorage {
public:
ModelWeightsStorage() = default;
~ModelWeightsStorage() = default;
BlobError Load(const Path& weights, Model model_type, Type weight_type,
hwy::ThreadPool& pool);
void Allocate(Model model_type, Type weight_type, hwy::ThreadPool& pool) {
Allocate(ConfigFromModel(model_type), weight_type, pool);
}
void Allocate(const ModelConfig& config, Type weight_type,
hwy::ThreadPool& pool);
void RandInit(std::mt19937& gen);
void ZeroInit();
void GetOrApplyScales(std::vector<float>& scales);
void AllocAndCopyWithTranspose(hwy::ThreadPool& pool);
void CopyWithTranspose(hwy::ThreadPool& pool);
void LogWeightStats();
const ModelConfig& Config() const { return config_; }
template <typename T>
ModelWeightsPtrs<T>* GetWeightsOfType() const {
if constexpr (IsSfpStream<T>()) {
return sfp_weights_.get();
} else if constexpr (IsF32<T>()) {
return float_weights_.get();
} else if constexpr (IsBF16<T>()) {
return bf16_weights_.get();
} else if constexpr (IsNuqStream<T>()) {
return nuq_weights_.get();
} else {
return HWY_ABORT("Unsupported type.");
}
}
template <template <typename T> class FuncT, typename... TArgs>
decltype(auto) CallForModelWeightT(TArgs&&... args) {
if (HWY_LIKELY(sfp_weights_))
return FuncT<SfpStream>()(*sfp_weights_, std::forward<TArgs>(args)...);
if (bf16_weights_)
return FuncT<BF16>()(*bf16_weights_, std::forward<TArgs>(args)...);
if (nuq_weights_)
return FuncT<NuqStream>()(*nuq_weights_, std::forward<TArgs>(args)...);
if (float_weights_)
return FuncT<float>()(*float_weights_, std::forward<TArgs>(args)...);
return HWY_ABORT("No weights loaded.");
}
template <template <typename T> class FuncT, typename... TArgs>
decltype(auto) CallForModelWeight(TArgs&&... args) {
if (HWY_LIKELY(sfp_weights_))
return FuncT<SfpStream>()(*this, std::forward<TArgs>(args)...);
if (bf16_weights_)
return FuncT<BF16>()(*this, std::forward<TArgs>(args)...);
if (nuq_weights_)
return FuncT<NuqStream>()(*this, std::forward<TArgs>(args)...);
if (float_weights_)
return FuncT<float>()(*this, std::forward<TArgs>(args)...);
return HWY_ABORT("No weights loaded.");
}
private:
void CreateForType(Type weight_type, hwy::ThreadPool& pool);
ModelConfig config_;
// To eliminate type templates, we hold a pointer to one of each weight type
// and dispatch to whichever is non-null.
std::unique_ptr<ModelWeightsPtrs<float>> float_weights_;
std::unique_ptr<ModelWeightsPtrs<BF16>> bf16_weights_;
std::unique_ptr<ModelWeightsPtrs<SfpStream>> sfp_weights_;
std::unique_ptr<ModelWeightsPtrs<NuqStream>> nuq_weights_;
// Storage for all the matrices and vectors.
std::vector<MatStorage> model_storage_;
};
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_WEIGHTS_H_