gemma.cpp/evals/benchmark_helper.h

150 lines
5.3 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef THIRD_PARTY_GEMMA_CPP_EVALS_BENCHMARK_HELPER_H_
#define THIRD_PARTY_GEMMA_CPP_EVALS_BENCHMARK_HELPER_H_
#include <stddef.h>
#include <string>
#include <vector>
#include "gemma/configs.h"
#include "gemma/gemma.h"
#include "gemma/gemma_args.h"
#include "gemma/tokenizer.h" // WrapAndTokenize
#include "ops/matmul.h"
#include "util/threading_context.h"
#include "hwy/base.h"
namespace gcpp {
// Return type for query model calls.
struct QueryResult {
std::string response;
size_t tokens_generated = 0;
// The position in the response at which the generated tokens start.
size_t response_start_pos = 0;
};
// Return type for batch query model calls with metrics.
struct QueryResultAndMetrics {
// The query results for each query in the batch.
std::vector<QueryResult> query_results;
// The timing information for the batch query.
TimingInfo timing_info;
};
// Convenience class to load a model and run inference.
class GemmaEnv {
public:
// Calls the other constructor with *Args arguments initialized from argv.
GemmaEnv(int argc, char** argv);
GemmaEnv(const LoaderArgs& loader, const ThreadingArgs& threading,
const InferenceArgs& inference);
MatMulEnv& Env() { return env_; }
size_t MaxGeneratedTokens() const {
return runtime_config_.max_generated_tokens;
}
void SetMaxGeneratedTokens(int max_generated_tokens) {
runtime_config_.max_generated_tokens =
static_cast<size_t>(max_generated_tokens);
}
std::vector<int> Tokenize(const std::string& input) const {
std::vector<int> tokens;
HWY_ASSERT(gemma_.Tokenizer().Encode(input, &tokens));
return tokens;
}
std::vector<int> TokenizeAndPrependBOS(const std::string& input) const {
std::vector<int> tokens = Tokenize(input);
tokens.insert(tokens.begin(), BOS_ID);
return tokens;
}
std::vector<int> WrapAndTokenize(const std::string& input) const {
return gcpp::WrapAndTokenize(gemma_.Tokenizer(), gemma_.ChatTemplate(),
gemma_.Config().wrapping, 0, input);
}
std::string StringFromTokens(const std::vector<int>& tokens) const {
std::string string;
HWY_ASSERT(gemma_.Tokenizer().Decode(tokens, &string));
return string;
}
// Adds turn structure to input, tokenizes and calls the below overload.
QueryResult QueryModel(const std::string& input);
// Runs inference on the given input and returns the top-1 result string and
// the number of tokens that were generated.
QueryResult QueryModel(const std::vector<int>& tokens);
// Runs inference on the given input and calls the callback for each token.
void QueryModel(const std::vector<int>& tokens,
const StreamFunc& stream_token);
// Similar to the above, but runs inference on a batch of inputs.
std::vector<QueryResult> BatchQueryModel(
const std::vector<std::string>& inputs);
// The default prefix_end means "causal attention".
std::vector<QueryResult> BatchQueryModel(
const QueriesPromptTokens& queries_prompt,
const hwy::Span<const size_t>& prefix_end = hwy::Span<const size_t>());
// Similar to the above, but returns timing information in addition to the
// query results.
QueryResultAndMetrics BatchQueryModelWithMetrics(
const std::vector<std::string>& prompt_strings);
QueryResultAndMetrics BatchQueryModelWithMetrics(
const QueriesPromptTokens& queries_prompt,
const hwy::Span<const size_t>& prefix_end = hwy::Span<const size_t>());
// Runs inference on the given input and returns the cross entropy, a measure
// of how well the model predicts the correct output. It is the average
// number of bits per token.
float CrossEntropy(const std::string& input);
const Gemma* GetGemma() const { return &gemma_; }
int Verbosity() const { return runtime_config_.verbosity; }
RuntimeConfig& MutableConfig() { return runtime_config_; }
KVCache& MutableKVCache() { return kv_caches_[0]; }
MatMulEnv& MutableEnv() { return env_; }
private:
// This is used to ensure that InternalInit is called before anything else.
int initializer_value_ = 0;
ThreadingContext ctx_;
MatMulEnv env_;
Gemma gemma_;
std::vector<KVCache> kv_caches_; // Same number as query batch.
RuntimeConfig runtime_config_;
};
// Logs the inference speed in tokens/sec.
void LogSpeedStats(double time_start, size_t total_tokens);
void ShowConfig(const LoaderArgs& loader, const ThreadingArgs& threading,
const InferenceArgs& inference, const ModelConfig& config,
WeightsPtrs::Mode weight_read_mode,
const ThreadingContext& ctx);
void ShowHelp(const LoaderArgs& loader, const ThreadingArgs& threading,
const InferenceArgs& inference);
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_EVALS_BENCHMARK_HELPER_H_