gemma.cpp/util/threading.h

652 lines
25 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Shared between various frontends.
#ifndef THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_H_
#define THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_H_
#include <stddef.h>
#include <stdio.h>
#include <algorithm> // std::sort
#include <memory> // std::unique_ptr
#include <utility> // std::move
#include <vector>
#include "hwy/base.h" // HWY_ASSERT
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/contrib/thread_pool/topology.h"
namespace gcpp {
// DEPRECATED, will be replaced by NestedPools once MatMul is updated.
// Owns 'inner' thread pools, one per 'cluster' (CCX or socket), plus an
// 'outer' thread pool with one worker per cluster.
//
// Useful for hierarchical parallelism, which makes sense when there are few
// but large tasks which should be parallelized by workers sharing a cache.
// This also implies lower latency for barrier synchronization of those workers.
class PerClusterPools {
using LPS = hwy::LogicalProcessorSet;
static inline std::vector<size_t> CoresInLPS(const LPS& cluster) {
std::vector<size_t> cores;
cores.reserve(cluster.Count());
cluster.Foreach([&cores](size_t idx) { cores.push_back(idx); });
return cores;
}
using CoreBitSets = std::vector<LPS>;
// Returns empty if detection failed.
CoreBitSets DetectCoresPerCluster() {
CoreBitSets clusters;
if (!have_threading_support_) return clusters;
// Which processors are not disabled via OS, taskset, or numactl.
LPS enabled;
// If we don't know, better to abort rather than risk oversubscribing.
if (!GetThreadAffinity(enabled)) return clusters;
hwy::Topology topology;
if (topology.packages.empty()) return clusters;
// Merge all clusters into one set, as a stopgap to emulate gemma-inl's
// prior single pool.
// TODO: remove once MatMul supports hierarchical parallelism.
LPS all;
// For each cluster, add its enabled *cores*.
for (const hwy::Topology::Package& package : topology.packages) {
for (const hwy::Topology::Cluster& cluster : package.clusters) {
cluster.lps.Foreach([&](size_t lp) {
if (enabled.Get(lp) && topology.lps[lp].smt == 0) {
all.Set(lp);
}
});
}
/* code to reinstate:
for (const hwy::Topology::Cluster& cluster : package.clusters) {
// Only use enabled *cores*, and only add if not empty.
cluster.lps.Foreach([&](size_t lp) {
if (enabled.Get(lp) && topology.lps[lp].smt == 0) {
all.Set(lp);
}
});
if (lps.Any()) clusters.push_back(lps);
}
*/
}
if (all.Any()) clusters.push_back(all);
// Sort by descending number of enabled cores, so that we preferentially
// use the largest clusters.
std::sort(clusters.begin(), clusters.end(),
[](const LPS& a, const LPS& b) { return a.Count() > b.Count(); });
return clusters;
}
void SetWaitMode(hwy::PoolWaitMode wait_mode) {
outer_pool_.SetWaitMode(wait_mode);
for (auto& inner : inner_pools_) {
inner->SetWaitMode(wait_mode);
}
}
// `user_max_or_zero` == 0 means no limit, which is the case for the defaults
// of `AppArgs` `max_clusters` and `num_threads`.
static inline size_t CapIfNonZero(size_t num_workers,
size_t user_max_or_zero) {
return (user_max_or_zero == 0) ? num_workers
: HWY_MIN(num_workers, user_max_or_zero);
}
// Returns the number of threads for `ThreadPool` to create: zero if there is
// no threading support, otherwise the capped number of workers minus the
// caller of `ThreadPool::Run`, which is the outer worker or main thread.
size_t CappedNumThreads(size_t num_workers, size_t user_max_or_zero) const {
if (!have_threading_support_) return 0;
const size_t capped_num_workers =
CapIfNonZero(num_workers, user_max_or_zero);
// Avoid underflow if number of workers is zero.
return capped_num_workers == 0 ? 0 : capped_num_workers - 1;
}
// Returns the number of workers for the inner pool whose index is `outer`, or
// 0 to indicate no limit if `max_threads` is zero.
size_t MaxInnerWorkers(const size_t max_threads, const size_t outer_workers,
const size_t outer) const {
HWY_DASSERT(outer < outer_workers);
if (max_threads == 0) return 0; // no limit
// Round down so we do not exceed the max.
const size_t max_threads_per_outer = max_threads / outer_workers;
// First outer pool gets the remainder.
const size_t remainder = (outer == 0) ? (max_threads % outer_workers) : 0;
return 1 + max_threads_per_outer + remainder;
}
public:
// Move-only.
PerClusterPools() = delete;
PerClusterPools(const PerClusterPools&) = delete;
PerClusterPools& operator=(const PerClusterPools&) = delete;
PerClusterPools(PerClusterPools&&) = delete;
PerClusterPools& operator=(PerClusterPools&&) = delete;
// PerClusterPools supports spin waits (see StartSpinning below). To prevent
// drastic slowdowns caused by excessive user-specified thread counts, which
// result in threads not running on their own core, we only allow for
// *upper bounds* on the number of clusters and threads. The actual number of
// clusters and threads are still limited by the detected topology.
// `max_threads` is the upper bound on threads to distribute among clusters,
// not including the one outer thread per cluster.
//
// `pin` is 0 or 1 to force enable/disable, or -1 to choose automatically.
PerClusterPools(size_t max_clusters, size_t max_threads, int pin = -1)
: have_threading_support_(hwy::HaveThreadingSupport()),
cores_per_cluster_(DetectCoresPerCluster()),
outer_pool_(CappedNumThreads(cores_per_cluster_.size(), max_clusters)) {
// Topology detection failed - it currently requires Linux.
if (cores_per_cluster_.empty()) {
// Create a single inner pool with up to TotalLogicalProcessors() / 2
// workers, further limited by `max_threads` if nonzero, and then pin to
// the first N processors, which are typically on the first socket.
const size_t num_threads =
CappedNumThreads(hwy::TotalLogicalProcessors() / 2, max_threads);
if (pin == -1) pin = num_threads > 8;
fprintf(stderr, "CPU topology unknown, using %zu threads, pin %d\n",
num_threads, pin);
inner_pools_.push_back(std::make_unique<hwy::ThreadPool>(num_threads));
if (num_threads > 1 && pin) {
inner_pools_.back()->Run(0, num_threads,
[](uint64_t /*task*/, size_t thread) {
hwy::PinThreadToLogicalProcessor(thread);
});
}
return;
}
for (size_t outer = 0; outer < outer_pool_.NumWorkers(); ++outer) {
const size_t max_inner_workers =
MaxInnerWorkers(max_threads, outer_pool_.NumWorkers(), outer);
const size_t num_threads = CappedNumThreads(
cores_per_cluster_[outer].Count(), max_inner_workers);
inner_pools_.push_back(std::make_unique<hwy::ThreadPool>(num_threads));
}
if (pin == -1) {
pin = (outer_pool_.NumWorkers() * inner_pools_[0]->NumWorkers()) >= 12;
}
if (pin) {
// For each inner pool, pin their threads AND the associated outer thread
// (the one calling inner.Run()) to the enabled cores in the cluster.
outer_pool_.Run(
0, outer_pool_.NumWorkers(),
[this](uint64_t outer, size_t outer_thread) {
HWY_ASSERT(outer == outer_thread); // each outer has one task
hwy::ThreadPool& inner = *inner_pools_[outer];
const std::vector<size_t> cores =
CoresInLPS(cores_per_cluster_[outer]);
// May have been capped by max_threads.
HWY_ASSERT(inner.NumWorkers() <= cores.size());
inner.Run(0, inner.NumWorkers(),
[&cores](uint64_t task, size_t thread) {
HWY_ASSERT(task == thread); // each inner has one task
hwy::PinThreadToLogicalProcessor(cores[task]);
});
});
}
}
// Spinning reduces the latency of barrier synchronization, but wastes lots of
// energy for long waits, so only do it during generation. This might also be
// unsafe in virtualized environments because we require threads to be running
// on their own core and thus responsive to the barrier synchronization.
void StartSpinning() { SetWaitMode(hwy::PoolWaitMode::kSpin); }
void StopSpinning() { SetWaitMode(hwy::PoolWaitMode::kBlock); }
// Bitset of cores, one per cluster, or empty if detection failed. Useful for
// displaying the topology.
const CoreBitSets& CoresPerCluster() const { return cores_per_cluster_; }
hwy::ThreadPool& Outer() { return outer_pool_; }
hwy::ThreadPool& Inner(size_t outer) {
HWY_ASSERT(outer < Outer().NumWorkers());
return *inner_pools_[outer];
}
// Returns number of logical processors, for allocating per-thread buffers.
size_t NumLP() const {
return outer_pool_.NumWorkers() * inner_pools_[0]->NumWorkers();
}
private:
bool have_threading_support_;
CoreBitSets cores_per_cluster_;
hwy::ThreadPool outer_pool_;
// hwy::ThreadPool is unfortunately not marked as movable, so we have to use
// unique_ptr.
std::vector<std::unique_ptr<hwy::ThreadPool>> inner_pools_;
};
// A slice of a 1D integer range such as the indices of packages or clusters.
// This allows assigning them to multiple instances of our binary.
struct BoundedSlice {
// Defaults to "use all detected".
BoundedSlice(size_t skip = 0, size_t max = 0) : skip(skip), max(max) {}
// How many to skip, or equivalently, index of the first to use. It is an
// error if this is >= `detected`, because that would leave none for this
// instance to use.
size_t skip;
// Upper bound on the number to use, or zero if no limit.
size_t max;
// STL-style one past the end.
size_t End(size_t detected) const {
return (max == 0) ? detected : HWY_MIN(detected, skip + max);
}
// Number of elements in the slice.
size_t Num(size_t detected) const { return End(detected) - skip; }
template <class Func>
void ForEach(const char* name, size_t detected, const Func& func) {
if (skip >= detected) {
HWY_ABORT("Invalid skip=%zu for %s, detected=%zu", skip, name, detected);
}
for (size_t i = skip; i < End(detected); ++i) {
func(i);
}
}
};
// "LP" is a logical processor, a 0-based index passed to the OS.
using LPS = hwy::LogicalProcessorSet;
// Wraps hwy::Topology and only keeps the subset of packages and clusters
// apportioned by BoundedSlice, further limited by the OS affinity mask.
// NOTE: if topology is unknown or the OS affinity is too restrictive, we fall
// back to a single package and cluster.
class BoundedTopology {
// Sort packages/clusters by descending size so that users who only use one
// get the largest.
template <class Group>
static void SortByDescendingLPs(std::vector<Group>& groups) {
std::sort(groups.begin(), groups.end(), [](const Group& a, const Group& b) {
return a.num_lps > b.num_lps;
});
}
public:
struct Cluster {
// Simple version when topology is unknown.
explicit Cluster(size_t num_workers) : num_lps(num_workers) {
HWY_ASSERT(num_lps != 0);
}
Cluster(const std::vector<hwy::Topology::LP>& all_lps, const LPS& enabled,
size_t package_lp, const hwy::Topology::Cluster& cluster,
LPS& package_lps) {
// All first-hyperthread LPs from the cluster that are enabled and not
// already in use as the package representative.
cluster.lps.Foreach([&](size_t lp) {
if (all_lps[lp].smt == 0 && enabled.Get(lp) && lp != package_lp) {
HWY_ASSERT(!lps.Get(lp));
lps.Set(lp);
HWY_ASSERT(!package_lps.Get(lp));
package_lps.Set(lp);
}
});
num_lps = lps.Count(); // = 0 if all disabled.
}
LPS lps;
size_t num_lps;
// Set by caller to the first of `lps` if there are multiple clusters in a
// package.
size_t cluster_lp = 0;
};
struct Package {
// Simple version when topology is unknown.
explicit Package(size_t num_workers) {
package_lp = 0;
num_lps = num_workers;
clusters.push_back(Cluster(num_workers));
}
Package(size_t package_idx, const hwy::Topology& topology,
const LPS& enabled, BoundedSlice cluster_slice) {
const hwy::Topology::Package& package = topology.packages[package_idx];
package_lp = package.clusters[0].lps.First();
cluster_slice.ForEach(
"cluster", package.clusters.size(), [&](size_t cluster_idx) {
Cluster cluster(topology.lps, enabled, package_lp,
package.clusters[cluster_idx], lps);
if (HWY_LIKELY(cluster.num_lps != 0)) {
num_lps += cluster.num_lps; // before std::move
clusters.push_back(std::move(cluster));
}
});
// Note that it is possible for `clusters` to be empty if its LPs are all
// disabled. If so, the caller will ignore topology and create a single
// package and cluster.
SortByDescendingLPs(clusters);
// If there are multiple clusters, set their first LP to represent the
// cluster and mark them as unavailable for its pool.
if (clusters.size() > 1) {
for (Cluster& cluster : clusters) {
cluster.cluster_lp = cluster.lps.First();
// Nonzero because if lp == 0 were enabled, it would be used as
// `package_lp` and excluded from `cluster.lps`.
HWY_ASSERT(cluster.cluster_lp != 0);
HWY_ASSERT(cluster.cluster_lp != package_lp);
cluster.lps.Clear(cluster.cluster_lp);
}
}
}
size_t package_lp;
LPS lps;
size_t num_lps = 0;
std::vector<Cluster> clusters;
};
BoundedTopology(BoundedSlice package_slice, BoundedSlice cluster_slice,
BoundedSlice lp_slice) {
const bool have_threading_support = hwy::HaveThreadingSupport();
LPS enabled_lps; // LPs not disabled via OS, taskset, or numactl.
bool missing_cluster = false;
if (HWY_LIKELY(have_threading_support)) {
(void)GetThreadAffinity(enabled_lps); // failure = all disabled
// No effect if topology is unknown or `enabled_lps` is empty.
package_slice.ForEach(
"package", topology_.packages.size(), [&](size_t package_idx) {
Package package(package_idx, topology_, enabled_lps, cluster_slice);
// Skip if empty - can happen due to `enabled_lps`.
if (HWY_LIKELY(!package.clusters.empty())) {
total_lps_ += package.num_lps; // before std::move
packages_.push_back(std::move(package));
}
});
for (Package& package : packages_) {
missing_cluster = package.clusters.empty();
if (HWY_UNLIKELY(missing_cluster)) {
fprintf(
stderr,
"Warning, found no clusters for package with %zu LPs.\nWe will "
"ignore topology and assume a single package/cluster.\n",
package.num_lps);
break;
}
}
}
// Topology unknown or any package ended up empty: create a single package
// with one cluster.
if (HWY_UNLIKELY(packages_.empty() || missing_cluster)) {
// We do not bother to detect hyperthreads. Not all CPUs have two per
// core, so instead of dividing, rely on the user's `lp_slice.max`. This
// works because Linux groups LPs by HT.
const size_t num_lps = have_threading_support
? lp_slice.Num(hwy::TotalLogicalProcessors())
: 1;
packages_.clear();
packages_.push_back(Package(num_lps));
total_lps_ = num_lps;
snprintf(topology_string_, sizeof(topology_string_), "LPs=%zu", num_lps);
} else {
SortByDescendingLPs(packages_);
const hwy::Topology::Package& tpackage0 = topology_.packages[0];
HWY_ASSERT(!tpackage0.clusters.empty());
const hwy::Topology::Cluster& tcluster0 = tpackage0.clusters[0];
const Package& package0 = GetPackage(0);
const Cluster& cluster0 = GetCluster(0, 0);
snprintf(topology_string_, sizeof(topology_string_),
"%zux%zux%zu, using %zux%zux%zu", topology_.packages.size(),
tpackage0.clusters.size(), tcluster0.lps.Count(),
packages_.size(), package0.clusters.size(), cluster0.num_lps);
}
HWY_ASSERT(NumPackages() != 0);
for (size_t package_idx = 0; package_idx < NumPackages(); ++package_idx) {
HWY_ASSERT(NumClusters(package_idx) != 0);
}
}
const char* TopologyString() const { return topology_string_; }
size_t NumPackages() const { return packages_.size(); }
const Package& GetPackage(size_t package_idx) const {
HWY_ASSERT(package_idx < NumPackages());
return packages_[package_idx];
}
Package& GetPackage(size_t package_idx) {
HWY_ASSERT(package_idx < NumPackages());
return packages_[package_idx];
}
size_t NumClusters(size_t package_idx) const {
return GetPackage(package_idx).clusters.size();
}
const Cluster& GetCluster(size_t package_idx, size_t cluster_idx) const {
const Package& package = GetPackage(package_idx);
HWY_ASSERT(cluster_idx < package.clusters.size());
return package.clusters[cluster_idx];
}
Cluster& GetCluster(size_t package_idx, size_t cluster_idx) {
Package& package = GetPackage(package_idx);
HWY_ASSERT(cluster_idx < package.clusters.size());
return package.clusters[cluster_idx];
}
// Returns number of logical processors, for allocating per-thread buffers.
size_t NumLP() const { return total_lps_; }
private:
hwy::Topology topology_;
size_t total_lps_ = 0;
std::vector<Package> packages_;
char topology_string_[96];
};
// Creates a hierarchy of thread pools according to BoundedTopology: one with a
// thread per enabled package; for each of those, one with a thread per enabled
// cluster (CCX/shared L3), and for each of those, the remaining enabled cores
// in that cluster. The cores representing each package and cluster are not
// included in the per-cluster pool because we support spin-waiting, hence
// there should be at most one thread per HW core.
//
// Useful when there are tasks which should be parallelized by workers sharing a
// cache, or on the same NUMA node. In both cases, individual pools have lower
// barrier synchronization latency than one large pool. However, to utilize all
// cores, call sites will have to use nested parallel-for loops.
class NestedPools {
public:
// Neither move nor copy.
NestedPools() = delete;
NestedPools(const NestedPools&) = delete;
NestedPools& operator=(const NestedPools&) = delete;
NestedPools(NestedPools&&) = delete;
NestedPools& operator=(NestedPools&&) = delete;
// `max_threads` is the maximum number of threads to divide among all
// clusters. It does not include the package and cluster representatives.
// This is more intuitive than a per-cluster limit for users who may not be
// aware of the CPU topology.
//
// To ensure we do not create more threads than there are HW cores, which
// would cause huge slowdowns when spinning, `BoundedSlice` imposes upper
// bounds on the number of detected packages and clusters rather than
// defining an exact amount.
//
// `pin` is 0 or 1 to force enable/disable, or -1 to choose automatically.
NestedPools(size_t max_threads, int pin = -1,
BoundedSlice package_slice = BoundedSlice(),
BoundedSlice cluster_slice = BoundedSlice(),
BoundedSlice lp_slice = BoundedSlice())
: topology_(package_slice, cluster_slice, lp_slice) {
if (pin == -1) pin = topology_.NumLP() >= 12;
packages_.resize(topology_.NumPackages());
all_packages_ = MakePool(packages_.size());
const size_t max_workers_per_package = max_threads / packages_.size();
// Parallel to ensure we also pin the calling (main) thread.
all_packages_->Run(
0, all_packages_->NumWorkers(),
[&](uint64_t package_idx, size_t thread) {
HWY_ASSERT(package_idx == thread); // each thread has one task
packages_[package_idx] = Package(
topology_, package_idx, max_workers_per_package, pin, lp_slice);
});
}
// Spinning reduces the latency of barrier synchronization, but wastes lots
// of energy for long waits, so only do it during generation. This might
// also be unsafe in virtualized environments because we require threads to
// be running on their own core and thus responsive to the barrier
// synchronization.
void StartSpinning() { SetWaitMode(hwy::PoolWaitMode::kSpin); }
void StopSpinning() { SetWaitMode(hwy::PoolWaitMode::kBlock); }
hwy::ThreadPool& AllPackages() { return *all_packages_; }
hwy::ThreadPool& AllClusters(size_t package_idx) {
HWY_ASSERT(package_idx < AllPackages().NumWorkers());
return *packages_[package_idx].all_clusters;
}
hwy::ThreadPool& Cluster(size_t package_idx, size_t cluster_idx) {
HWY_ASSERT(cluster_idx < AllClusters(package_idx).NumWorkers());
return *packages_[package_idx].clusters[cluster_idx];
}
const char* TopologyString() const { return topology_.TopologyString(); }
// Returns number of logical processors, for allocating per-thread buffers.
size_t NumLP() const { return topology_.NumLP(); }
private:
// `max_or_zero` == 0 means no limit.
static inline size_t CapIfNonZero(size_t num, size_t max_or_zero) {
return (max_or_zero == 0) ? num : HWY_MIN(num, max_or_zero);
}
// We want vectors of hwy::ThreadPool, which is unfortunately not movable,
// hence we wrap them in unique_ptr.
using PoolPtr = std::unique_ptr<hwy::ThreadPool>;
static PoolPtr MakePool(size_t num_workers) {
// `ThreadPool` expects the number of threads to create, which is one less
// than the number of workers, but avoid underflow if zero.
const size_t num_threads = num_workers == 0 ? 0 : num_workers - 1;
return std::make_unique<hwy::ThreadPool>(num_threads);
}
class Package {
static PoolPtr CreateClusterPool(const BoundedTopology::Cluster& cluster,
size_t max_cluster_workers, int pin,
BoundedSlice lp_slice) {
PoolPtr pool =
MakePool(CapIfNonZero(cluster.num_lps, max_cluster_workers));
if (!pin) return pool;
// Else: pin all new threads AND the calling thread from `all_clusters`.
// We know the topology: pin to this cluster's cores, including the
// calling thread from `all_clusters`.
if (cluster.lps.Any()) {
std::vector<size_t> lps;
lps.reserve(cluster.num_lps);
cluster.lps.Foreach([&lps](size_t lp) { lps.push_back(lp); });
pool->Run(0, pool->NumWorkers(), [&lps](uint64_t task, size_t thread) {
HWY_ASSERT(task == thread); // each worker has one task
hwy::PinThreadToLogicalProcessor(lps[task]);
});
} else {
// Pin to consecutive LPs.
pool->Run(0, pool->NumWorkers(),
[lp_slice](uint64_t task, size_t thread) {
HWY_ASSERT(task == thread); // each worker has one task
hwy::PinThreadToLogicalProcessor(lp_slice.skip + thread);
});
}
return pool;
}
public:
Package() = default; // for vector
Package(const BoundedTopology& topology, size_t package_idx,
size_t max_workers_per_package, int pin, BoundedSlice lp_slice) {
clusters.resize(topology.NumClusters(package_idx));
const size_t max_workers_per_cluster =
max_workers_per_package / clusters.size();
all_clusters = MakePool(clusters.size());
// Parallel so we also pin the calling thread from `all_packages_`.
all_clusters->Run(
0, all_clusters->NumWorkers(),
[&](size_t cluster_idx, size_t thread) {
HWY_ASSERT(cluster_idx == thread); // each thread has one task
const BoundedTopology::Cluster& cluster =
topology.GetCluster(package_idx, cluster_idx);
clusters[cluster_idx] = CreateClusterPool(
cluster, max_workers_per_cluster, pin, lp_slice);
});
}
std::vector<PoolPtr> clusters;
PoolPtr all_clusters;
};
void SetWaitMode(hwy::PoolWaitMode wait_mode) {
all_packages_->SetWaitMode(wait_mode);
for (Package& package : packages_) {
package.all_clusters->SetWaitMode(wait_mode);
for (PoolPtr& cluster : package.clusters) {
cluster->SetWaitMode(wait_mode);
}
}
}
BoundedTopology topology_;
std::vector<Package> packages_;
PoolPtr all_packages_;
};
static inline NestedPools CreateSinglePool(size_t max_threads, int pin = -1) {
const BoundedSlice one(0, 1);
return NestedPools(max_threads, pin, one, one);
}
} // namespace gcpp
#endif // THIRD_PARTY_GEMMA_CPP_UTIL_THREADING_H_