gemma.cpp/ops/gemma_matvec_test.cc

200 lines
7.5 KiB
C++

// Copyright 2023 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef HWY_DISABLED_TARGETS
// Exclude HWY_SCALAR due to 2x bf16 -> f32.
#define HWY_DISABLED_TARGETS HWY_SCALAR
#endif
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include "compression/compress.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "ops/gemma_matvec_test.cc" // NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
// After highway.h
#include "ops/matvec-inl.h"
#include "ops/ops-inl.h" // MulByConst
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
template <size_t kOuter, size_t kInner>
hwy::AlignedFreeUniquePtr<float[]> SimpleMatVecAdd(
const CompressedArray<float, kOuter * kInner>& mat,
const hwy::AlignedFreeUniquePtr<float[]>& vec,
const hwy::AlignedFreeUniquePtr<float[]>& add) {
hwy::AlignedFreeUniquePtr<float[]> uncompressed_mat =
hwy::AllocateAligned<float>(kOuter * kInner);
hwy::AlignedFreeUniquePtr<float[]> out = hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(uncompressed_mat && out);
Decompress(mat, 0, uncompressed_mat.get(), kOuter * kInner);
MulByConst(mat.scale(), uncompressed_mat.get(), kOuter * kInner);
for (size_t idx_row = 0; idx_row < kOuter; idx_row++) {
out[idx_row] = add[idx_row];
for (size_t idx_col = 0; idx_col < kInner; idx_col++) {
out[idx_row] +=
uncompressed_mat[kInner * idx_row + idx_col] * vec[idx_col];
}
}
return out;
}
template <typename MatT, size_t kOuter, size_t kInner>
CompressedArray<MatT, kOuter * kInner> GenerateMat(size_t offset,
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
CompressedArray<MatT, kOuter * kInner> mat;
std::array<float, kOuter * kInner> content;
const float scale = 1.0f / kInner;
pool.Run(0, kOuter, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kInner; j++) {
content[i * kInner + j] =
static_cast<float>((i * kInner + j + offset) * scale);
}
});
Compress(content, ws, mat, pool);
mat.set_scale(1.9f); // Arbitrary value, different from 1.
return mat;
}
template <size_t length>
hwy::AlignedFreeUniquePtr<float[]> GenerateVec(size_t offset) {
hwy::AlignedFreeUniquePtr<float[]> vec = hwy::AllocateAligned<float>(length);
HWY_ASSERT(vec);
for (size_t idx = 0; idx < length; idx++) {
vec[idx] = static_cast<float>(idx + offset);
}
return vec;
}
template <size_t length>
void AssertClose(const hwy::AlignedFreeUniquePtr<float[]>& a,
const hwy::AlignedFreeUniquePtr<float[]>& b) {
for (size_t idx = 0; idx < length; idx++) {
const float rel_abs_delta = std::abs(a[idx] - b[idx]) /
std::max(std::abs(a[idx]), std::abs(b[idx]));
EXPECT_LT(rel_abs_delta, 2e-6)
<< "a[" << idx << "]=" << a[idx] << ", b[" << idx << "]=" << b[idx];
}
}
void TestMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> even_odd =
hwy::AllocateAligned<float>(kInner * pool.NumWorkers());
hwy::AlignedFreeUniquePtr<float[]> expected_out =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add);
hwy::AlignedFreeUniquePtr<float[]> actual_out =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add && even_odd && expected_out && actual_out);
MatVecAdd<kOuter, kInner>(mat, 0, vec.get(), add.get(), even_odd.get(),
actual_out.get(), pool);
AssertClose<kOuter>(actual_out, expected_out);
}
void TestTwoMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat0 =
GenerateMat<float, kOuter, kInner>(0, pool);
CompressedArray<float, kOuter * kInner> mat1 =
GenerateMat<float, kOuter, kInner>(1, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat0, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat1, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoMatVecAdd<kOuter, kInner>(mat0, mat1, 0, vec.get(), add0.get(), add1.get(),
actual_out0.get(), actual_out1.get(), pool);
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
void TestTwoOfsMatVecAddLoop() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoOfsMatVecAddLoop<kOuter, kInner>(mat, 0, 0, vec.get(), add0.get(),
add1.get(), actual_out0.get(),
actual_out1.get());
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_BEFORE_TEST(MatVecTest);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestTwoMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestTwoOfsMatVecAddLoop);
HWY_AFTER_TEST();
} // namespace gcpp
#endif