// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Include guard for non-SIMD code. #ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_OPS_H_ #define THIRD_PARTY_GEMMA_CPP_GEMMA_OPS_H_ #include #include #include #include #include #include #include #include // std::enable_if_t #include "compression/sfp.h" #include "hwy/base.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/detect_targets.h" #include "hwy/profiler.h" #endif // THIRD_PARTY_GEMMA_CPP_GEMMA_OPS_H_ // Include guard for (potentially) SIMD code. #if defined(THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE) == defined(HWY_TARGET_TOGGLE) #ifdef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE #undef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE #else #define THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE #endif #include "compression/compress-inl.h" #include "hwy/contrib/algo/transform-inl.h" #include "hwy/contrib/dot/dot-inl.h" #include "hwy/contrib/math/math-inl.h" #include "hwy/contrib/matvec/matvec-inl.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { namespace hn = hwy::HWY_NAMESPACE; HWY_INLINE constexpr size_t MaxCols() { // Vec + mat rows should fit into 32 KiB L1. return 2048; } template HWY_INLINE constexpr std::enable_if_t< std::is_arithmetic_v && std::is_arithmetic_v, To> StaticCast(From from) noexcept { if constexpr (std::is_unsigned_v && std::is_floating_point_v) return static_cast( static_cast>(from)); else return static_cast(from); } // For testing. template void AssertClose(const MatT* HWY_RESTRICT expected, const MatT* HWY_RESTRICT actual, size_t num) { for (size_t idx = 0; idx < num; idx++) { const double expected_value = hwy::ConvertScalarTo(expected[idx]); const double actual_value = hwy::ConvertScalarTo(actual[idx]); const double magnitude = std::abs(expected_value); const double tolerance = 256.0 * hwy::ConvertScalarTo(hwy::Epsilon()) * HWY_MAX(magnitude, 1.0); if (!(expected_value - tolerance <= actual_value && actual_value <= expected_value + tolerance)) { fprintf(stderr, "expected[%lu]: %f, actual[%lu]: %f\n", idx, expected_value, idx, actual_value); HWY_ASSERT(0); } } } template HWY_INLINE constexpr size_t RowsPerStrip() { // Aim for 128 work items to reduce pool overhead. Must be at least one // vector; prefer a power of two for faster division. constexpr size_t kLanes = hn::ScalableTag().MaxLanes(); constexpr size_t kRowsPerStrip = kOuter < 128 ? kLanes : HWY_MAX(kLanes, 1ULL << hwy::FloorLog2(kOuter / 128)); return kRowsPerStrip; } // Shared between f32 and bf16, which also accumulates into f32 vectors. template > HWY_INLINE void StoreHorizontalSums(DF df, VF c00, VF c01, VF c02, VF c03, VF c10, VF c11, VF c12, VF c13, // VF c20, VF c21, VF c22, VF c23, // VF c30, VF c31, VF c32, VF c33, float* HWY_RESTRICT tile_c, size_t stride_c) { // We are computing the product of (4, 4N) * (4N, 4) = (4, 4) tiles. // Each entry of C[r,c] is a dot product of A.row and B.col, which reside in // the lanes of `c$r$c`, so we store their horizontal sum (ReduceSum). This is // expensive, but only a fraction of the kColsA_RowsB/N FMAs. tile_c[stride_c * 0 + 0] = hn::ReduceSum(df, c00); tile_c[stride_c * 0 + 1] = hn::ReduceSum(df, c01); tile_c[stride_c * 0 + 2] = hn::ReduceSum(df, c02); tile_c[stride_c * 0 + 3] = hn::ReduceSum(df, c03); if (kNumRows == 1) return; tile_c[stride_c * 1 + 0] = hn::ReduceSum(df, c10); tile_c[stride_c * 1 + 1] = hn::ReduceSum(df, c11); tile_c[stride_c * 1 + 2] = hn::ReduceSum(df, c12); tile_c[stride_c * 1 + 3] = hn::ReduceSum(df, c13); if (kNumRows == 2) return; tile_c[stride_c * 2 + 0] = hn::ReduceSum(df, c20); tile_c[stride_c * 2 + 1] = hn::ReduceSum(df, c21); tile_c[stride_c * 2 + 2] = hn::ReduceSum(df, c22); tile_c[stride_c * 2 + 3] = hn::ReduceSum(df, c23); if (kNumRows == 3) return; tile_c[stride_c * 3 + 0] = hn::ReduceSum(df, c30); tile_c[stride_c * 3 + 1] = hn::ReduceSum(df, c31); tile_c[stride_c * 3 + 2] = hn::ReduceSum(df, c32); tile_c[stride_c * 3 + 3] = hn::ReduceSum(df, c33); } // Completes the tile by summing across the vectors, and adds the biases. template > HWY_INLINE void StoreHorizontalSumsAdd(DF df, VF c00, VF c01, VF c02, VF c03, VF c10, VF c11, VF c12, VF c13, // VF c20, VF c21, VF c22, VF c23, // VF c30, VF c31, VF c32, VF c33, const float* HWY_RESTRICT add, float* HWY_RESTRICT tile_c, size_t stride_c) { // We are computing the product of (4, 4N) * (4N, 4) = (4, 4) tiles. // Each entry of C[r,c] is a dot product of A.row and B.col, which reside in // the lanes of `c$r$c`, so we store their horizontal sum (ReduceSum). This is // expensive, but only a fraction of the kColsA_RowsB/N FMAs. float addon0 = hwy::ConvertScalarTo(add[0]); tile_c[stride_c * 0 + 0] = hn::ReduceSum(df, c00) + addon0; float addon1 = hwy::ConvertScalarTo(add[1]); tile_c[stride_c * 0 + 1] = hn::ReduceSum(df, c01) + addon1; float addon2 = hwy::ConvertScalarTo(add[2]); tile_c[stride_c * 0 + 2] = hn::ReduceSum(df, c02) + addon2; float addon3 = hwy::ConvertScalarTo(add[3]); tile_c[stride_c * 0 + 3] = hn::ReduceSum(df, c03) + addon3; if (kNumRows == 1) return; tile_c[stride_c * 1 + 0] = hn::ReduceSum(df, c10) + addon0; tile_c[stride_c * 1 + 1] = hn::ReduceSum(df, c11) + addon1; tile_c[stride_c * 1 + 2] = hn::ReduceSum(df, c12) + addon2; tile_c[stride_c * 1 + 3] = hn::ReduceSum(df, c13) + addon3; if (kNumRows == 2) return; tile_c[stride_c * 2 + 0] = hn::ReduceSum(df, c20) + addon0; tile_c[stride_c * 2 + 1] = hn::ReduceSum(df, c21) + addon1; tile_c[stride_c * 2 + 2] = hn::ReduceSum(df, c22) + addon2; tile_c[stride_c * 2 + 3] = hn::ReduceSum(df, c23) + addon3; if (kNumRows == 3) return; tile_c[stride_c * 3 + 0] = hn::ReduceSum(df, c30) + addon0; tile_c[stride_c * 3 + 1] = hn::ReduceSum(df, c31) + addon1; tile_c[stride_c * 3 + 2] = hn::ReduceSum(df, c32) + addon2; tile_c[stride_c * 3 + 3] = hn::ReduceSum(df, c33) + addon3; } // Wrapper around StoreHorizontalSums and StoreHorizontalSumsAdd to shorten call // sites. If `!kAdd`, `add` is nullptr, so adding `add_offset` to it would be // UB, hence we pass it as a separate argument. template > HWY_INLINE void StoreHorizontalSumsMaybeAdd( DF df, VF c00, VF c01, VF c02, VF c03, VF c10, VF c11, VF c12, VF c13, VF c20, VF c21, VF c22, VF c23, VF c30, VF c31, VF c32, VF c33, const float* HWY_RESTRICT add, size_t add_offset, float* HWY_RESTRICT tile_c, size_t stride_c) { if constexpr (kAdd) { StoreHorizontalSumsAdd(df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add + add_offset, tile_c, stride_c); } else { StoreHorizontalSums(df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, tile_c, stride_c); } } #undef GEMMA_NATIVE_BF16 #if HWY_IDE || (defined(HWY_NATIVE_REORDER_WIDEN_MUL_ACC_BF16) == \ defined(HWY_TARGET_TOGGLE)) #define GEMMA_NATIVE_BF16 1 #else #define GEMMA_NATIVE_BF16 0 #endif #if GEMMA_NATIVE_BF16 // Specialization for f32 += bf16 * bf16 that avoids promoting to f32. template HWY_INLINE void GEMM_4x4_Tile(const hwy::bfloat16_t* HWY_RESTRICT A, const hwy::bfloat16_t* HWY_RESTRICT B, float* HWY_RESTRICT C, const float* add, const size_t idx_tile, const size_t xtiles, const size_t stride_a, const size_t stride_b, const size_t stride_c) { constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; static_assert(kNumRows <= kRegRows); // Top-left of tile is (row_a, col_ab) for A, and (row_b_col_c, col_ab) for B. const size_t row_a = idx_tile / xtiles * kRegRows; const size_t row_b_col_c = idx_tile % xtiles * kRegCols; const hn::ScalableTag df; using VF = hn::Vec; // ReorderWidenMulAccumulate does not use its sum1 arg and we can use full // bf16 vectors. const hn::Repartition d; VF unused_sum1 = hn::Zero(df); const size_t N = Lanes(d); VF c00 = hn::Zero(df); VF c01 = hn::Zero(df); VF c02 = hn::Zero(df); VF c03 = hn::Zero(df); VF c10 = hn::Zero(df); VF c11 = hn::Zero(df); VF c12 = hn::Zero(df); VF c13 = hn::Zero(df); VF c20 = hn::Zero(df); VF c21 = hn::Zero(df); VF c22 = hn::Zero(df); VF c23 = hn::Zero(df); VF c30 = hn::Zero(df); VF c31 = hn::Zero(df); VF c32 = hn::Zero(df); VF c33 = hn::Zero(df); const hwy::bfloat16_t* HWY_RESTRICT tile_a = A + stride_a * row_a; const hwy::bfloat16_t* HWY_RESTRICT tile_b = B + stride_b * row_b_col_c; // Loop over columns of A and columns of the transposed B, in steps of N. // Accumulates into the c## vectors. HWY_UNROLL(1) for (size_t col_ab = 0; col_ab < kColsA_RowsB; col_ab += N) { using V = hn::Vec; const V b0 = hn::LoadU(d, tile_b + stride_b * 0 + col_ab); const V b1 = hn::LoadU(d, tile_b + stride_b * 1 + col_ab); const V b2 = hn::LoadU(d, tile_b + stride_b * 2 + col_ab); const V b3 = hn::LoadU(d, tile_b + stride_b * 3 + col_ab); const V a0 = hn::LoadU(d, tile_a + stride_a * 0 + col_ab); c00 = hn::ReorderWidenMulAccumulate(df, a0, b0, c00, unused_sum1); c01 = hn::ReorderWidenMulAccumulate(df, a0, b1, c01, unused_sum1); c02 = hn::ReorderWidenMulAccumulate(df, a0, b2, c02, unused_sum1); c03 = hn::ReorderWidenMulAccumulate(df, a0, b3, c03, unused_sum1); if constexpr (kNumRows == 1) continue; const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab); c10 = hn::ReorderWidenMulAccumulate(df, a1, b0, c10, unused_sum1); c11 = hn::ReorderWidenMulAccumulate(df, a1, b1, c11, unused_sum1); c12 = hn::ReorderWidenMulAccumulate(df, a1, b2, c12, unused_sum1); c13 = hn::ReorderWidenMulAccumulate(df, a1, b3, c13, unused_sum1); if constexpr (kNumRows == 2) continue; const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab); c20 = hn::ReorderWidenMulAccumulate(df, a2, b0, c20, unused_sum1); c21 = hn::ReorderWidenMulAccumulate(df, a2, b1, c21, unused_sum1); c22 = hn::ReorderWidenMulAccumulate(df, a2, b2, c22, unused_sum1); c23 = hn::ReorderWidenMulAccumulate(df, a2, b3, c23, unused_sum1); if constexpr (kNumRows == 3) continue; const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab); c30 = hn::ReorderWidenMulAccumulate(df, a3, b0, c30, unused_sum1); c31 = hn::ReorderWidenMulAccumulate(df, a3, b1, c31, unused_sum1); c32 = hn::ReorderWidenMulAccumulate(df, a3, b2, c32, unused_sum1); c33 = hn::ReorderWidenMulAccumulate(df, a3, b3, c33, unused_sum1); } // Ensure sum1 was indeed unused. HWY_DASSERT(hn::AllTrue(df, hn::Eq(unused_sum1, hn::Zero(df)))); float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; StoreHorizontalSumsMaybeAdd( df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add, row_b_col_c, tile_c, stride_c); } #endif // GEMMA_NATIVE_BF16 // The col_ab loop is unrolled 2x, so we have two consecutive a0/a1 and b00/b01 // etc. Multiplies a[c] with b[r,c] and adds to c[r]. template HWY_INLINE void UpdateTileRow(const VF& a0, const VF& a1, const VF& b00, const VF& b01, const VF& b10, const VF& b11, const VF& b20, const VF& b21, const VF& b30, const VF& b31, VF& c0, VF& c1, VF& c2, VF& c3) { c0 = hn::MulAdd(a0, b00, c0); c1 = hn::MulAdd(a0, b10, c1); c2 = hn::MulAdd(a0, b20, c2); c3 = hn::MulAdd(a0, b30, c3); c0 = hn::MulAdd(a1, b01, c0); c1 = hn::MulAdd(a1, b11, c1); c2 = hn::MulAdd(a1, b21, c2); c3 = hn::MulAdd(a1, b31, c3); } // Accumulates a single kNumRowsx4 tile of A x B into C. B is transposed, so we // can iterate over both A and B with consecutive vector loads. kNumRows<=4. // General case: uses CompressTraits to load from A and B. template HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, float* HWY_RESTRICT C, const float* add, const size_t idx_tile, const size_t xtiles, const size_t stride_a, const size_t stride_b, const size_t stride_c) { constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; static_assert(kNumRows <= kRegRows); using TraitsA = CompressTraits; using TraitsB = CompressTraits; // Top-left of tile is (row_a, col_ab) for A, and (row_b_col_c, col_ab) for B. const size_t row_a = idx_tile / xtiles * kRegRows; const size_t row_b_col_c = idx_tile % xtiles * kRegCols; const hn::ScalableTag d32; const size_t N = hn::Lanes(d32); using V = hn::Vec; V c00 = hn::Zero(d32); V c01 = hn::Zero(d32); V c02 = hn::Zero(d32); V c03 = hn::Zero(d32); V c10 = hn::Zero(d32); V c11 = hn::Zero(d32); V c12 = hn::Zero(d32); V c13 = hn::Zero(d32); V c20 = hn::Zero(d32); V c21 = hn::Zero(d32); V c22 = hn::Zero(d32); V c23 = hn::Zero(d32); V c30 = hn::Zero(d32); V c31 = hn::Zero(d32); V c32 = hn::Zero(d32); V c33 = hn::Zero(d32); const size_t tile_a_ofs = stride_a * row_a; const size_t tile_b_ofs = stride_b * row_b_col_c; // Loop over columns of A and columns of the transposed B, in steps of 2*N // (since we are decoding consecutive bytes at each iteration). // Accumulates into the c## vectors. size_t col_ab = 0; HWY_UNROLL(1) for (; col_ab <= kColsA_RowsB - 2 * N; col_ab += 2 * N) { V b00, b01; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 0 + col_ab, b00, b01); V b10, b11; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 1 + col_ab, b10, b11); V b20, b21; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 2 + col_ab, b20, b21); V b30, b31; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 3 + col_ab, b30, b31); V a00, a01; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 0 + col_ab, a00, a01); UpdateTileRow(a00, a01, b00, b01, b10, b11, b20, b21, b30, b31, c00, c01, c02, c03); if constexpr (kNumRows == 1) continue; V a10, a11; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 1 + col_ab, a10, a11); UpdateTileRow(a10, a11, b00, b01, b10, b11, b20, b21, b30, b31, c10, c11, c12, c13); if constexpr (kNumRows == 2) continue; V a20, a21; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 2 + col_ab, a20, a21); UpdateTileRow(a20, a21, b00, b01, b10, b11, b20, b21, b30, b31, c20, c21, c22, c23); if constexpr (kNumRows == 3) continue; V a30, a31; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 3 + col_ab, a30, a31); UpdateTileRow(a30, a31, b00, b01, b10, b11, b20, b21, b30, b31, c30, c31, c32, c33); } float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; StoreHorizontalSumsMaybeAdd( d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add, row_b_col_c, tile_c, stride_c); } // Tiled 4x4 GEMM. Typically batch_size is 1..512, kColsA_RowsB is 3k or 24k, // and kColsBC is 24k or 3k. Note: B is transposed (column-major). // NOTE that batch_size is the number of rows of A and C. // This function processes tiles in parallel with a work-stealing thread pool. template HWY_NOINLINE void MatMul_4x4_Batch_Add( size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, OutT* HWY_RESTRICT C, const AddT* add, hwy::ThreadPool& pool) { PROFILER_ZONE("Matmul"); // Process reg-sized tiles of C in parallel. We currently write C directly, // which touches more memory than fits in L3. TODO: add another level of loops // so that we finish one L3-sized piece of C at a time. const hn::ScalableTag d; const size_t N = Lanes(d); constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; // in vectors static_assert(kColsBC % kRegCols == 0); HWY_ASSERT(kColsA_RowsB % (N * kRegCols) == 0); const size_t kTilesY = (batch_size + kRegRows - 1) / kRegRows; const size_t kTilesX = kColsBC / kRegCols; const size_t kTiles = kTilesX * kTilesY; constexpr size_t kStrideA = kColsA_RowsB; constexpr size_t kStrideB = kColsA_RowsB; constexpr size_t kStrideC = kColsBC; pool.Run(0, kTiles, [&](const uint64_t idx_tile, size_t /*thread*/) HWY_ATTR { // Computes the finished product of one 4x4N tile and writes to C. const size_t num_rows = batch_size - idx_tile / kTilesX * kRegRows; HWY_ASSERT(num_rows > 0); switch (num_rows) { case 1: GEMM_4x4_Tile<1, kColsA_RowsB, kAdd>(A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; case 2: GEMM_4x4_Tile<2, kColsA_RowsB, kAdd>(A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; case 3: GEMM_4x4_Tile<3, kColsA_RowsB, kAdd>(A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; default: GEMM_4x4_Tile<4, kColsA_RowsB, kAdd>(A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); } }); } template HWY_NOINLINE void MatMul_4x4_Batch( size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, OutT* HWY_RESTRICT C, hwy::ThreadPool& pool) { MatMul_4x4_Batch_Add( batch_size, A, B, C, /*add=*/static_cast(nullptr), pool); } //------------------------------------------------------------------------------ HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned, const size_t size, float* HWY_RESTRICT out) { const hn::ScalableTag df; const hn::Repartition dbf16; HWY_DASSERT(size % hn::Lanes(dbf16) == 0); HWY_DASSERT(hn::IsAligned(df, vec_aligned)); for (size_t i = 0; i < size; i += hn::Lanes(dbf16)) { const auto interleaved = hn::LoadU(dbf16, vec_aligned + i); hn::Store(hn::PromoteEvenTo(df, interleaved), df, out + i); hn::Store(hn::PromoteOddTo(df, interleaved), df, out + i + hn::Lanes(df)); } } HWY_INLINE void ToEvenOddF32(const float* HWY_RESTRICT vec_aligned, const size_t size, float* HWY_RESTRICT out) { const hn::ScalableTag df; using VF = hn::Vec; HWY_DASSERT(size % (hn::Lanes(df) * 2) == 0); HWY_DASSERT(hn::IsAligned(df, vec_aligned)); VF vec0, vec1; for (size_t i = 0; i < size; i += hn::Lanes(df) * 2) { hn::LoadInterleaved2(df, vec_aligned + i, vec0, vec1); hn::Store(vec0, df, out + i); hn::Store(vec1, df, out + i + hn::Lanes(df)); } } // Simple version without tiling nor threading, but two offsets/outputs and // always with addition. template HWY_INLINE void TwoOfsMatVecAddLoop(const ArrayT& mat, const size_t mat_ofs0, const size_t mat_ofs1, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1) { PROFILER_ZONE("TwoOfsMatVecAddLoop"); constexpr bool kVecEO = false; const hn::ScalableTag df; for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) { const size_t row_ofs0 = mat_ofs0 + (idx_row)*kInner; const size_t row_ofs1 = mat_ofs1 + (idx_row)*kInner; out0[idx_row] = hwy::ConvertScalarTo(add0[idx_row]) + Dot(df, mat, row_ofs0, vec_aligned, kInner); out1[idx_row] = hwy::ConvertScalarTo(add1[idx_row]) + Dot(df, mat, row_ofs1, vec_aligned, kInner); } } namespace detail { // For each i = [0, num_rows), compute partial (length `num_cols`) dot product // of row i with `vec_aligned` and add into `out[i]`. The upper-left // coordinate of the tile is r0, c0. template HWY_INLINE void AccumulatePartialDotProducts( DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols, const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) { for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) { const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride; out[idx_row] += Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } } // Same as AccumulatePartialDotProducts, but sets out[i] to the first partial // dot product + init (if kInit), which avoids having to zero-initialize and // accumulate. template HWY_INLINE void SetFirstPartialDotProducts(DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols, const VecT* HWY_RESTRICT vec_aligned, const InitT* HWY_RESTRICT init, float* HWY_RESTRICT out) { for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) { const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride; if constexpr (kInit) { out[idx_row] = hwy::ConvertScalarTo(init[idx_row + r0]) + Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } else { out[idx_row] = Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } } } // Adds together partial dot products for all tiles with the same r0 (a // horizontal strip of the entire matrix); the result is the full dot product // for rows r in [r0, r0 + num_rows) + optionally the add vector, which we // store into in out[r - r0]. template HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t num_rows, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add, float* HWY_RESTRICT out) { // Tall and skinny: set `out` to the single dot product. if (mat_stride < MaxCols()) { SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows, mat_stride, vec_aligned, add, out); return; } // We have at least MaxCols, so start by setting `out` to that: SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows, MaxCols(), vec_aligned, add, out); // For further multiples of MaxCols, accumulate. Remainders handled below. size_t c0 = MaxCols(); for (; c0 <= mat_stride - MaxCols(); c0 += MaxCols()) { AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows, MaxCols(), vec_aligned, out); } if (c0 < mat_stride) { // Final cols AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows, mat_stride - c0, vec_aligned, out); } } template HWY_INLINE void MatVecAddInner(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { const hn::ScalableTag df; constexpr size_t kRowsPerStrip = RowsPerStrip(); constexpr size_t kNumStrips = kOuter / kRowsPerStrip; // For each entire strip. pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR { PROFILER_ZONE("MatVec.lambda"); const size_t r0 = strip * kRowsPerStrip; detail::FullDotProductsForStrip( df, mat, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add, out + r0); }); // Remaining rows const size_t r0 = kNumStrips * kRowsPerStrip; if (r0 < kOuter) { PROFILER_ZONE("MatVec remainder"); const size_t num_rows = kOuter - r0; detail::FullDotProductsForStrip( df, mat, mat_ofs, kInner, r0, num_rows, vec_aligned, add, out + r0); } } } // namespace detail // Stores dot products of rows with `vec_aligned` + add the values from `add` // (if kAdd), then stores them to `out`. template HWY_INLINE void MatVecT(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { PROFILER_ZONE("MatVecAdd"); #if !defined(HWY_NATIVE_DOT_BF16) || !HWY_NATIVE_DOT_BF16 using MatT = typename ArrayT::value_type; // Sfp -> float does not benefit enough to recoup the cost of ToEvenOddF32. if constexpr (CompressTraits::kSupportsEvenOdd && hwy::IsSameEither() && !(hwy::IsSame() && hwy::IsSame())) { ToEvenOddF32(vec_aligned, kInner, even_odd); detail::MatVecAddInner( mat, mat_ofs, even_odd, add, out, pool); return; } #else (void)even_odd; #endif detail::MatVecAddInner( mat, mat_ofs, vec_aligned, add, out, pool); } // With addition template HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { return MatVecT(mat, mat_ofs, vec_aligned, add, even_odd, out, pool); } // Without addition template HWY_INLINE void MatVec(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { MatVecT(mat, mat_ofs, vec_aligned, /*add=*/static_cast(nullptr), even_odd, out, pool); } template static HWY_INLINE hn::Vec Gelu(D d, hn::Vec v) { const hn::Vec kMul = hn::Set(d, 0.044715f); const hn::Vec kSqrt2OverPi = hn::Set(d, 0.797884560804236f); const hn::Vec kHalf = hn::Set(d, 0.5f); // tanh approximation matches training. const hn::Vec v3 = hn::Mul(hn::Mul(v, v), v); const hn::Vec arg = hn::Mul(kSqrt2OverPi, hn::MulAdd(kMul, v3, v)); // 0.5 * (1 + tan) = MulAdd(0.5, tan, 0.5). const hn::Vec cdf = hn::MulAdd(kHalf, hn::Tanh(d, arg), kHalf); return hn::Mul(v, cdf); } static HWY_NOINLINE HWY_MAYBE_UNUSED void Gelu(float* HWY_RESTRICT x, size_t size) { namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; hn::Transform(D(), x, size, [](D d, hn::Vec v) HWY_ATTR { return Gelu(d, v); }); } // out[i] = BF(mul[i] * Gelu(gelu_in[i])) static HWY_NOINLINE HWY_MAYBE_UNUSED void GeluMulToBF16( const float* HWY_RESTRICT gelu_in, const float* HWY_RESTRICT mul, hwy::bfloat16_t* HWY_RESTRICT out, size_t size) { namespace hn = hwy::HWY_NAMESPACE; const hn::ScalableTag df; const hn::Repartition dbf; const size_t NF = hn::Lanes(df); using VF = hn::Vec; size_t i = 0; if (size >= 2 * NF) { for (; i <= size - 2 * NF; i += 2 * NF) { const VF mul0 = hn::LoadU(df, mul + i); const VF mul1 = hn::LoadU(df, mul + i + NF); const VF g0 = hn::Mul(mul0, Gelu(df, hn::LoadU(df, gelu_in + i))); const VF g1 = hn::Mul(mul1, Gelu(df, hn::LoadU(df, gelu_in + i + NF))); const hn::Vec bf = hn::OrderedDemote2To(dbf, g0, g1); hn::StoreU(bf, dbf, out + i); } } if (i != size) { const size_t remaining = size - i; const VF mul0 = hn::LoadN(df, mul + i, remaining); const VF g0 = hn::Mul(mul0, Gelu(df, hn::LoadN(df, gelu_in + i, remaining))); const hn::Half dbfh; const hn::Vec bfh = hn::DemoteTo(dbfh, g0); hn::StoreN(bfh, dbfh, out + i, remaining); } } template static HWY_INLINE hn::Vec Sigmoid(D d, hn::Vec v) { using VF = hn::Vec; // Chebyshev polynomial coefficients for rational approximation const VF c0 = hn::Set(d, 0.00949107017368078f); const VF c1 = hn::Set(d, 0.0654858946800232f); const VF c2 = hn::Set(d, 0.231547489762306f - 0.00949107017368078f); const VF c3 = hn::Set(d, 0.530778527259827f); const VF c4 = hn::Set(d, 0.855334937572479f); const VF c5 = hn::Set(d, 0.500000894069672f); const VF d0 = hn::Set(d, 0.130970627069473f); const VF d1 = hn::Set(d, 3.99615288415589e-07f); const VF d2 = hn::Set(d, 1.06155431270599f - 0.130970627069473f); const VF d3 = hn::Set(d, 1.35144250634767e-06f); const VF d4 = hn::Set(d, 1); // The approximation works in range -12..12, but the input value is clamped // in -11.5..11.5 since the approximation slightly overshoots after that. // The function is nearly 0 for input values below -11.5 and nearly 1 for // input values above 11.5. const VF invtwelve = hn::Set(d, 1.0f / 12.0f); const VF lo = hn::Set(d, -11.5f); const VF hi = hn::Set(d, 11.5f); VF f = hn::Clamp(v, lo, hi); f = hn::Mul(f, invtwelve); VF f2 = hn::Add(f, f); VF a1 = hn::MulAdd(f2, c0, c1); VF a2 = hn::MulAdd(f2, a1, c2); VF a3 = hn::Sub(hn::MulAdd(f2, a2, c3), a1); VF a4 = hn::Sub(hn::MulAdd(f2, a3, c4), a2); VF f0 = hn::Sub(hn::MulAdd(f, a4, c5), a3); VF b1 = hn::MulAdd(f2, d0, d1); VF b2 = hn::MulAdd(f2, b1, d2); VF b3 = hn::Sub(hn::MulAdd(f2, b2, d3), b1); VF f1 = hn::Sub(hn::MulAdd(f, b3, d4), b2); return hn::Div(f0, f1); } // Sigmoid using the logistic function 1 / (1 + exp(-x[i])) static HWY_NOINLINE HWY_MAYBE_UNUSED void Sigmoid(float* HWY_RESTRICT x, size_t size) { namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; hn::Transform(D(), x, size, [](D d, hn::Vec v) HWY_ATTR { return Sigmoid(d, v); }); } // Two matrices, same vector template HWY_NOINLINE void TwoMatVecT(const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { PROFILER_ZONE("TwoMatVecAdd"); const hn::ScalableTag df; constexpr size_t kRowsPerStrip = RowsPerStrip(); constexpr size_t kNumStrips = kOuter / kRowsPerStrip; constexpr bool kVecIsEvenOdd = false; // For each entire strip. pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR { PROFILER_ZONE("TwoMatVec.lambda"); const size_t r0 = strip * kRowsPerStrip; detail::FullDotProductsForStrip( df, mat0, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add0, out0 + r0); detail::FullDotProductsForStrip( df, mat1, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add1, out1 + r0); }); // Remaining rows const size_t r0 = kNumStrips * kRowsPerStrip; if (r0 < kOuter) { PROFILER_ZONE("TwoMatVec remainder"); const size_t num_rows = kOuter - r0; detail::FullDotProductsForStrip( df, mat0, mat_ofs, kInner, r0, num_rows, vec_aligned, add0, out0 + r0); detail::FullDotProductsForStrip( df, mat1, mat_ofs, kInner, r0, num_rows, vec_aligned, add1, out1 + r0); } } // With addition template HWY_NOINLINE void TwoMatVecAdd( const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { return TwoMatVecT( mat0, mat1, mat_ofs, vec_aligned, add0, add1, out0, out1, pool); } // Without addition template HWY_NOINLINE void TwoMatVec(const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { TwoMatVecT( mat0, mat1, mat_ofs, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr, out0, out1, pool); } static HWY_NOINLINE HWY_MAYBE_UNUSED float Dot(const float* HWY_RESTRICT a, const float* HWY_RESTRICT b, size_t size) { const hn::ScalableTag d; HWY_DASSERT(size >= hn::Lanes(d)); HWY_DASSERT(size % hn::Lanes(d) == 0); constexpr int kAssumptions = hn::Dot::kAtLeastOneVector | hn::Dot::kMultipleOfVector; return hn::Dot::Compute(d, a, b, size); } // = Dot(a, a, size), but that is not allowed due to HWY_RESTRICT. static HWY_NOINLINE HWY_MAYBE_UNUSED float SquaredL2( const float* HWY_RESTRICT a, size_t size) { const hn::ScalableTag d; using V = hn::Vec; const size_t N = hn::Lanes(d); HWY_DASSERT(size >= 2 * N); HWY_DASSERT(size % (2 * N) == 0); V sum0 = hn::Zero(d); V sum1 = hn::Zero(d); for (size_t i = 0; i <= size - 2 * N; i += 2 * N) { const V a0 = hn::LoadU(d, a + i); sum0 = hn::MulAdd(a0, a0, sum0); const V a1 = hn::LoadU(d, a + i + N); sum1 = hn::MulAdd(a1, a1, sum1); } return hn::ReduceSum(d, hn::Add(sum0, sum1)); } // float, float -> float; simple loop. static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm( const float* HWY_RESTRICT x, const float* HWY_RESTRICT weight, float* HWY_RESTRICT out, size_t size) { constexpr float kEps = 1e-6f; float ss = SquaredL2(x, size); ss = 1.0f / sqrtf(ss / StaticCast(size) + kEps); for (size_t j = 0; j < size; j++) { // Note 1.0f centering here out[j] = (1.0f + weight[j]) * (ss * x[j]); } } // x=f, w=bf16 -> out=f static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm( const float* HWY_RESTRICT x, const hwy::bfloat16_t* HWY_RESTRICT weight, float* HWY_RESTRICT out, size_t size) { namespace hn = hwy::HWY_NAMESPACE; constexpr float kEps = 1e-6f; constexpr size_t kUnrollSize = 2; const hn::ScalableTag dbf; const hn::Repartition df32; const size_t N32 = hn::Lanes(df32); const float ss = SquaredL2(x, size); const auto vss = hn::Set(df32, 1.0f / sqrtf(ss / StaticCast(size) + kEps)); HWY_DASSERT(size % (kUnrollSize * MaxLanes(df32)) == 0); for (size_t i = 0; i < size; i += kUnrollSize * N32) { const hn::Vec w16 = hn::LoadU(dbf, weight + i); const auto w0 = hn::PromoteLowerTo(df32, w16); const auto w1 = hn::PromoteUpperTo(df32, w16); const auto m0 = hn::Mul(vss, hn::LoadU(df32, x + i)); const auto m1 = hn::Mul(vss, hn::LoadU(df32, x + i + N32)); // (1+weight) * m = m + weight*m = one FMA. hn::StoreU(hn::MulAdd(m0, w0, m0), df32, out + i); hn::StoreU(hn::MulAdd(m1, w1, m1), df32, out + i + N32); } } // float -> float; simple loop. static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace( const float* HWY_RESTRICT weight, float* HWY_RESTRICT inout, size_t size) { constexpr float kEps = 1e-6f; float ss = SquaredL2(inout, size); ss = 1.0f / sqrtf(ss / StaticCast(size) + kEps); for (size_t j = 0; j < size; j++) { // Note 1.0f centering here inout[j] = (1.0f + weight[j]) * (ss * inout[j]); } } // w=bf16 -> f static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace( const hwy::bfloat16_t* HWY_RESTRICT weight, float* HWY_RESTRICT inout, const size_t size) { namespace hn = hwy::HWY_NAMESPACE; const hn::ScalableTag dbf; const hn::Repartition df32; using VF = hn::Vec; const size_t N32 = hn::Lanes(df32); constexpr float kEps = 1e-6f; const float ss = SquaredL2(inout, size); const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / StaticCast(size) + kEps)); HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0); for (size_t i = 0; i < size; i += 2 * N32) { const hn::Vec w16 = hn::LoadU(dbf, weight + i); const VF w0 = hn::PromoteLowerTo(df32, w16); const VF w1 = hn::PromoteUpperTo(df32, w16); const VF m0 = hn::Mul(vss, hn::LoadU(df32, inout + i)); const VF m1 = hn::Mul(vss, hn::LoadU(df32, inout + i + N32)); // (1+weight) * m = m + weight*m = one FMA. hn::StoreU(hn::MulAdd(m0, w0, m0), df32, inout + i); hn::StoreU(hn::MulAdd(m1, w1, m1), df32, inout + i + N32); } } // f, f -> bf // TODO(janwas): consider generic function with adapter for loading bf16/f32 static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm( const float* HWY_RESTRICT x, const float* HWY_RESTRICT weight, hwy::bfloat16_t* HWY_RESTRICT out, const size_t size) { namespace hn = hwy::HWY_NAMESPACE; const hn::ScalableTag dbf; const hn::Repartition df32; using VF = hn::Vec; const size_t N32 = hn::Lanes(df32); constexpr float kEps = 1e-6f; const float ss = SquaredL2(x, size); const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / StaticCast(size) + kEps)); HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0); for (size_t i = 0; i < size; i += 2 * N32) { const VF w0 = hn::LoadU(df32, weight + i); const VF w1 = hn::LoadU(df32, weight + i + N32); const VF m0 = hn::Mul(vss, hn::LoadU(df32, x + i)); const VF m1 = hn::Mul(vss, hn::LoadU(df32, x + i + N32)); // (1+weight) * m = m + weight*m = one FMA. const VF out0 = hn::MulAdd(m0, w0, m0); const VF out1 = hn::MulAdd(m1, w1, m1); hn::StoreU(hn::OrderedDemote2To(dbf, out0, out1), dbf, out + i); } } // x=f, w=bf16 -> bf16 to enable W16A16 MatVec. static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm( const float* HWY_RESTRICT x, const hwy::bfloat16_t* HWY_RESTRICT weight, hwy::bfloat16_t* HWY_RESTRICT out, const size_t size) { namespace hn = hwy::HWY_NAMESPACE; const hn::ScalableTag dbf; const hn::Repartition df32; using VF = hn::Vec; const size_t N32 = hn::Lanes(df32); constexpr float kEps = 1e-6f; const float ss = SquaredL2(x, size); const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / StaticCast(size) + kEps)); HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0); for (size_t i = 0; i < size; i += 2 * N32) { const hn::Vec w16 = hn::LoadU(dbf, weight + i); const VF w0 = hn::PromoteLowerTo(df32, w16); const VF w1 = hn::PromoteUpperTo(df32, w16); const VF m0 = hn::Mul(vss, hn::LoadU(df32, x + i)); const VF m1 = hn::Mul(vss, hn::LoadU(df32, x + i + N32)); // (1+weight) * m = m + weight*m = one FMA. const VF out0 = hn::MulAdd(m0, w0, m0); const VF out1 = hn::MulAdd(m1, w1, m1); hn::StoreU(hn::OrderedDemote2To(dbf, out0, out1), dbf, out + i); } } static HWY_NOINLINE HWY_MAYBE_UNUSED void AddAbsolutePositionalEmbeddings( float* HWY_RESTRICT x, size_t dim_model, size_t pos) { const size_t num_timescales = dim_model / 2; const float log_timescale_increment = logf(10000.0f) / (num_timescales != 0 ? StaticCast(num_timescales - 1) : 1.0f); for (size_t dim = 0; dim < num_timescales; ++dim) { const float inv_timescale = expf(StaticCast(dim) * -log_timescale_increment); x[dim] += sinf(StaticCast(pos) * inv_timescale); x[num_timescales + dim] += cosf(StaticCast(pos) * inv_timescale); } } /* RoPE as in Rotary Position Embeddings from the RoFormer paper (https://arxiv.org/abs/2104.09864v5). The query and key vectors are rotated as a function of their absolute position using the rotation matrix R before the self-attention operation. R is a d x d matrix. R = cos(m*theta_1) -sin(m*theta_1) ... 0 0 sin(m*theta_1) cos(m*theta_1) 0 0 ... 0 0 0 0 ... 0 0 ... 0 0 ... cos(m*theta_{d/2}) sin(m*theta_{d/2}) 0 0 ... sin(m*theta_{d/2}) cos(m*theta_{d/2}) Here theta_i = 10000^(-2(i-1)/d), where d is the dimension of the vector and i is the ith index of the vector. Applying the rotation matrix R to a vector v is equivalent to rotating every consecutive pair of dimensions of v i.e. v_{2i} and v_{2i+1} by an angle m*theta_i. However in the Gemma implementation we choose to rotate the pairs of dimensions v_{i} and v_{i + d//2} instead. pos parameter is deliberately an int because in the backward pass we call this with negative values (for the VJP calculation we need the transpose of this rotation matrix which is simply the same matrix with -pos parameter) */ static HWY_NOINLINE HWY_MAYBE_UNUSED void Rope(float* HWY_RESTRICT x, size_t dim_qkv, int pos) { HWY_DASSERT(dim_qkv % 2 == 0); const size_t half_dim_qkv = dim_qkv / 2; for (size_t dim = 0; dim < half_dim_qkv; ++dim) { const float freq_exponents = StaticCast(2 * dim) / StaticCast(dim_qkv); // Replacing with expf(ln(1E4) * freq_exponents) changes results noticeably. const float timescale = powf(10000.0f, freq_exponents); const float theta = StaticCast(pos) / timescale; const float cos_val = cosf(theta); const float sin_val = sinf(theta); const float x0 = x[dim]; const float x1 = x[dim + half_dim_qkv]; x[dim] = x0 * cos_val - x1 * sin_val; x[dim + half_dim_qkv] = x0 * sin_val + x1 * cos_val; } } static HWY_NOINLINE HWY_MAYBE_UNUSED void RopeAndMulBy(const float mul, float* HWY_RESTRICT x, size_t dim_qkv, int pos) { HWY_DASSERT(dim_qkv % 2 == 0); const size_t half_dim_qkv = dim_qkv / 2; for (size_t dim = 0; dim < half_dim_qkv; ++dim) { const float freq_exponents = StaticCast(2 * dim) / StaticCast(dim_qkv); // Replacing with expf(ln(1E4) * freq_exponents) changes results noticeably. const float timescale = powf(10000.0f, freq_exponents); const float theta = StaticCast(pos) / timescale; const float cos_val = cosf(theta); const float sin_val = sinf(theta); const float x0 = x[dim]; const float x1 = x[dim + half_dim_qkv]; x[dim] = mul * (x0 * cos_val - x1 * sin_val); x[dim + half_dim_qkv] = mul * (x0 * sin_val + x1 * cos_val); } } static HWY_NOINLINE HWY_MAYBE_UNUSED void AddFrom( const float* HWY_RESTRICT other, float* HWY_RESTRICT x, const size_t size) { namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; hn::Transform1(D(), x, size, other, [](const auto d, const V x, const V other) HWY_ATTR { return hn::Add(x, other); }); } // Simple loops unless/until batch sizes are large enough to parallelize. template void RMSNormBatched(size_t num_tokens, const float* activations, const WeightT* weights, OutT* out, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { RMSNorm(activations + token_idx * model_dim, weights, out + token_idx * model_dim, model_dim); } } template void RMSNormInplaceBatched(size_t num_tokens, const WeightT* weights, InOutT* inout, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { RMSNormInplace(weights, inout + token_idx * model_dim, model_dim); } } template void AddFromBatched(size_t num_tokens, const float* other, float* x, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { AddFrom(other + token_idx * model_dim, x + token_idx * model_dim, model_dim); } } static HWY_NOINLINE void MulBy(const float* HWY_RESTRICT other, float* HWY_RESTRICT x, const size_t size, const size_t max_pos) { HWY_DASSERT(max_pos <= size); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; hn::Transform1(D(), x, max_pos, other, [](const auto d, const V x, const V other) HWY_ATTR { return hn::Mul(x, other); }); } static HWY_INLINE HWY_MAYBE_UNUSED void MulBy(const float* HWY_RESTRICT other, float* HWY_RESTRICT x, const size_t size) { return MulBy(other, x, size, size); } static HWY_NOINLINE void MulByConst(const float c, float* HWY_RESTRICT x, const size_t size, const size_t max_pos) { HWY_DASSERT(max_pos <= size); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; hn::Transform(D(), x, max_pos, [c](const auto d, const V x) HWY_ATTR { return hn::Mul(x, hn::Set(d, c)); }); } static HWY_INLINE HWY_MAYBE_UNUSED void MulByConst(const float c, float* HWY_RESTRICT x, const size_t size) { MulByConst(c, x, size, size); } static HWY_NOINLINE void MulByConstAndAdd(const float c, const float* HWY_RESTRICT x, float* HWY_RESTRICT out, const size_t size, const size_t max_pos) { namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; hn::Transform1(D(), out, max_pos, x, [c](const auto d, const V v_out, const V v_x) HWY_ATTR { return hn::MulAdd(v_x, hn::Set(d, c), v_out); }); } static HWY_INLINE HWY_MAYBE_UNUSED void MulByConstAndAdd( float c, const float* HWY_RESTRICT x, float* HWY_RESTRICT out, size_t size) { MulByConstAndAdd(c, x, out, size, size); } static HWY_NOINLINE void Softmax(float* HWY_RESTRICT x, const size_t size, const size_t mask_pos) { HWY_DASSERT(size != 0); HWY_DASSERT(mask_pos <= size); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; const D d; const V vmin = hn::Set(d, hwy::LowestValue()); V vmax = vmin; V* pmax = &vmax; // workaround for SVE: cannot capture &vector directly Foreach(d, x, mask_pos, vmin, [pmax](const auto d, const V value) HWY_ATTR { *pmax = hn::Max(*pmax, value); }); vmax = hn::MaxOfLanes(d, vmax); // Subtract max (avoid precision loss for large exponents) and exponentiate. hn::Transform(d, x, mask_pos, [pmax](const auto d, const V value) HWY_ATTR { #if HWY_TARGET & HWY_ALL_SVE // Temporary workaround for buggy SVE codegen: avoid inlined // Exp(). return hn::CallExp(d, hn::Sub(value, *pmax)); #else return hn::Exp(d, hn::Sub(value, *pmax)); #endif }); V sum = hn::Zero(d); V* psum = ∑ Foreach(d, x, mask_pos, sum, [psum](const auto d, const V value) HWY_ATTR { *psum = hn::Add(*psum, value); }); // Normalize to probability distribution const float mul = 1.0f / hn::ReduceSum(d, sum); MulByConst(mul, x, size, mask_pos); } static HWY_INLINE HWY_MAYBE_UNUSED void Softmax(float* HWY_RESTRICT x, const size_t size) { Softmax(x, size, size); } static HWY_NOINLINE void LogitsSoftCap(const float cap, float* HWY_RESTRICT x, const size_t size, const size_t max_pos) { HWY_DASSERT(max_pos <= size); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; using V = hn::Vec; const float inv_cap = 1.0f / cap; hn::Transform(D(), x, max_pos, [cap, inv_cap](D d, V v) HWY_ATTR { return hn::Mul(hn::Set(d, cap), hn::Tanh(d, hn::Mul(v, hn::Set(d, inv_cap)))); }); } static HWY_INLINE HWY_MAYBE_UNUSED void LogitsSoftCap(const float cap, float* HWY_RESTRICT x, const size_t size) { LogitsSoftCap(cap, x, size, size); } static HWY_NOINLINE HWY_MAYBE_UNUSED size_t SampleArgmax(const float* probabilities, size_t vocab_size) { size_t max_index = 0; float max_prob = probabilities[0]; for (size_t i = 1; i < vocab_size; ++i) { if (probabilities[i] > max_prob) { max_index = i; max_prob = probabilities[i]; } } return max_index; } template static HWY_NOINLINE HWY_MAYBE_UNUSED std::discrete_distribution create_distribution(std::array& top_k, float temperature) { namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; // re-normalize distribution const float temperature_inv = 1.0f / temperature; hn::Transform(D(), top_k.data(), top_k.size(), [temperature_inv](D d, hn::Vec v) HWY_ATTR { return hn::Exp( d, hn::Mul(hn::Log(d, v), hn::Set(d, temperature_inv))); }); return std::discrete_distribution(std::begin(top_k), std::end(top_k)); } template static HWY_NOINLINE HWY_MAYBE_UNUSED int SampleTopK( const float* HWY_RESTRICT probabilities, size_t vocab_size, std::mt19937& gen, float temperature, TAcceptToken& accept_token) { static_assert(k != 0, ""); // TODO: Optimize, potentially using new VQSort PartialSort. std::array top_k{}; // sorted from highest [0], to lowest [k-1] std::array indices{}; for (size_t i = 0; i < vocab_size; ++i) { if (probabilities[i] < top_k[k - 1] && (!accept_token || accept_token(StaticCast(i), probabilities[i]))) { continue; } for (size_t j = 0; j < k; ++j) { if (probabilities[i] > top_k[j] && (!accept_token || accept_token(StaticCast(i), probabilities[i]))) { // shift elements by 1, insert the new value, move on to next value for (size_t idx = k - 1; idx > j; --idx) { top_k[idx] = top_k[idx - 1]; indices[idx] = indices[idx - 1]; } top_k[j] = probabilities[i]; indices[j] = StaticCast(i); break; } } } return indices[create_distribution(top_k, temperature)(gen)]; } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #endif // NOLINT