// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // SIMD functions for Gemma/Griffin transformers. // Include guard (still compiled once per target) #if defined(THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_) == \ defined(HWY_TARGET_TOGGLE) #ifdef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #undef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #else #define THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #endif #include #include #include // memcpy #include #include #include #include #include "gemma/activations.h" #include "gemma/common.h" #include "gemma/gemma.h" #include "gemma/ops.h" #include "gemma/weights.h" // Placeholder for internal test4, do not remove #include "hwy/aligned_allocator.h" #include "hwy/base.h" #include "hwy/contrib/matvec/matvec-inl.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/highway.h" #include "hwy/profiler.h" #include "hwy/timer.h" #ifndef GEMMA_CONFIG #if HWY_IDE // Provide a definition so the IDE does not complain. #define GEMMA_CONFIG ConfigGemmaTiny #else #error "Only include from instantiations/*.cc, which must define GEMMA_CONFIG" #endif // HWY_IDE #endif // GEMMA_CONFIG HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { template HWY_NOINLINE void GriffinRecurrent( size_t batch_start, size_t num_tokens, size_t num_queries, size_t layer, Activations& activations, const CompressedLayer* layer_weights, const std::vector& kv_caches, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Griffin"); HWY_ASSERT(num_queries == 1); // TODO: add batch query support for Griffin. KVCache& kv_cache = *kv_caches[0]; namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; static constexpr size_t kModelDim = TConfig::kModelDim; static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth; static constexpr size_t kHeads = TConfig::kHeads; // X / Y linear layers. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); TwoMatVecAdd( layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0, activations.pre_att_rms_out.Batch(batch_idx), /*add0=*/layer_weights->griffin.linear_x_biases.data_scale1(), /*add1=*/layer_weights->griffin.linear_y_biases.data_scale1(), /*out0=*/x, /*out1=*/y, pool); Gelu(y, kModelDim); } // Conv1D. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); HWY_FULL(float) df; HWY_DASSERT(kModelDim % hn::Lanes(df) == 0); const size_t layer_offset = layer * kModelDim * (kConv1dWidth - 1); // cache[i] = input at time t-i. float* HWY_RESTRICT cache[HWY_MAX(kConv1dWidth, 1)]; cache[0] = x; for (size_t i = 1; i < kConv1dWidth; i++) { cache[i] = kv_cache.conv1d_cache.get() + layer_offset + ((pos + kConv1dWidth - 1 - i) % (kConv1dWidth - 1)) * kModelDim; } for (size_t i = 0; i < kModelDim; i += hn::Lanes(df)) { auto xv = hn::Load(df, x + i); auto accum0 = hn::Load(df, layer_weights->griffin.conv_biases.data_scale1() + i); auto accum1 = hn::Zero(df); static_assert(kConv1dWidth % 2 == 0, "Conv width must be even"); for (size_t l = 0; 2 * l < kConv1dWidth; l++) { auto wv0 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (kConv1dWidth - 1 - 2 * l) * kModelDim + i); auto wv1 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (kConv1dWidth - 2 - 2 * l) * kModelDim + i); accum0 = hn::MulAdd(wv0, hn::Load(df, cache[l * 2] + i), accum0); accum1 = hn::MulAdd(wv1, hn::Load(df, cache[l * 2 + 1] + i), accum1); } hn::Store(hn::Add(accum0, accum1), df, x + i); hn::Store(xv, df, cache[HWY_MAX(kConv1dWidth, 1) - 1] + i); } } // RGLRU for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* HWY_RESTRICT gate_x = activations.griffin_gate_x.Batch(batch_idx); float* HWY_RESTRICT a = activations.griffin_multiplier.Batch(batch_idx); float* HWY_RESTRICT rnn_state = kv_cache.rglru_cache.get() + layer * kModelDim; pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR { constexpr size_t kHeadDim = kModelDim / kHeads; constexpr size_t kMatrixSize = kHeadDim * kHeadDim; size_t head_offset = head * kHeadDim; TwoOfsMatVecAddLoop( layer_weights->griffin.gate_w, kMatrixSize * head, kMatrixSize * (kHeads + head), x + head_offset, /*add0=*/layer_weights->griffin.gate_biases.data_scale1() + head_offset, /*add1=*/layer_weights->griffin.gate_biases.data_scale1() + kModelDim + head_offset, /*out0=*/gate_x + head_offset, /*out1=*/a + head_offset); Sigmoid(gate_x + head_offset, kHeadDim); Sigmoid(a + head_offset, kHeadDim); const auto fn_mul = [](D d, hn::Vec x, hn::Vec gate_x) HWY_ATTR { return hn::Mul(x, gate_x); }; hn::Transform1(D(), a + head_offset, kHeadDim, layer_weights->griffin.a.data_scale1() + head_offset, fn_mul); hn::Transform1(D(), x + head_offset, kHeadDim, gate_x + head_offset, fn_mul); // RNN scan HWY_FULL(float) df; HWY_DASSERT(kHeadDim % hn::Lanes(df) == 0); for (size_t i = 0; i < kHeadDim; i += hn::Lanes(df)) { auto log_a = hn::Load(df, a + head_offset + i); auto gated_x = hn::Load(df, x + head_offset + i); auto rnn = hn::Load(df, rnn_state + head_offset + i); auto a = hn::Exp(df, log_a); auto x_multiplier = hn::Sqrt(hn::NegMulAdd(a, a, hn::Set(df, 1.0f))); if (pos == 0) { x_multiplier = hn::Set(df, 1.0f); } auto new_x = hn::MulAdd(x_multiplier, gated_x, hn::Mul(a, rnn)); hn::Store(new_x, df, rnn_state + head_offset + i); // Join branches. auto yv = hn::Load(df, y + head_offset + i); auto pre_out = hn::Mul(yv, new_x); hn::Store(pre_out, df, x + head_offset + i); } }); } // Final linear layer. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* out_ptr = activations.att_post2.Batch(batch_idx); MatVecAdd( layer_weights->griffin.linear_out_w, 0, x, layer_weights->griffin.linear_out_biases.data_scale1(), activations.even_odd.All(), out_ptr, pool); } } template HWY_NOINLINE void PostQK(T* HWY_RESTRICT t, size_t pos, size_t layer) { constexpr size_t kQKVDim = TConfig::kQKVDim; // PostQKType::Rope Rope(t, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos); } template HWY_NOINLINE void Attention(size_t batch_and_query_start, size_t num_tokens, size_t num_queries, size_t layer, Activations& activations, const CompressedLayer* layer_weights, const std::vector& kv_caches, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Attention"); HWY_DASSERT(batch_and_query_start % num_queries == 0); constexpr size_t kQKVDim = TConfig::kQKVDim; constexpr size_t kQStride = Activations::QStride(); constexpr size_t kCachePosSize = CachePosSize()(); constexpr size_t kCacheLayerSize = CacheLayerSize()(); constexpr size_t kModelDim = TConfig::kModelDim; constexpr size_t kHeads = TConfig::kHeads; constexpr size_t kKVHeads = TConfig::kKVHeads; constexpr size_t kSeqLen = TConfig::kSeqLen; GEMMA_CONSTEXPR_SQRT float kQueryScale = ChooseQueryScale(); // Multi-Head Attention a.k.a. "use_qkv_einsum". constexpr bool kIsMHA = Activations::IsMHA(); static_assert(!kIsMHA || TConfig::kInterleaveQKV); // MHA => interleaved const size_t batch_start = batch_and_query_start / num_queries; const size_t num_tokens_and_queries = num_tokens * num_queries; // For the computation of Q, K, and V, it is useful to remember that // qkv_einsum_w has shape [(kHeads + kKVHeads * 2), kKQVDim, kModelDim] // and kQStride = kQKVDim * (kIsMHA ? 3 : 1); // // Compute Q only or QKV (if MHA). // If MHA, this also computes KV, which we copy to the KV cache below. const float scale = layer_weights->qkv_einsum_w.scale(); MatMul_4x4_Batch( num_tokens_and_queries, activations.pre_att_rms_out.All(), layer_weights->qkv_einsum_w.data(), scale, activations.q.All(), pool); // Compute KV if not MHA. if constexpr (!kIsMHA) { for (size_t batch_and_query_idx = 0; batch_and_query_idx < num_tokens_and_queries; ++batch_and_query_idx) { const float* x = activations.pre_att_rms_out.Batch(batch_and_query_idx); const size_t query_idx = batch_and_query_idx % num_queries; const size_t batch_idx = batch_and_query_idx / num_queries; KVCache& kv_cache = *kv_caches[query_idx]; const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; // KV structure is [k, v, k, v, ....] = kKVHeads pairs of (k, v). // TODO: requires MatMul support for offsets. MatVec( layer_weights->qkv_einsum_w, kHeads * kQKVDim * kModelDim, x, activations.even_odd.All(), kv, pool); } } // Apply positional encodings for K (and copy KV to cache if MHA). pool.Run( 0, kKVHeads * num_tokens_and_queries, [&](uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kKVHeads; const size_t batch_and_query_idx = task / kKVHeads; const size_t query_idx = batch_and_query_idx % num_queries; const size_t batch_idx = batch_and_query_idx / num_queries; const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim * 2; KVCache& kv_cache = *kv_caches[query_idx]; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; if constexpr (kIsMHA) { // For MHA, copy KV into the KV cache from scratch space (see above). const float* HWY_RESTRICT q = activations.q.Batch(batch_and_query_idx) + head * kQStride; // Skip past the Q part of `q`, and copy KV to `kv`. memcpy(kv, q + kQKVDim, 2 * kQKVDim * sizeof(float)); } PostQK(kv, pos, layer); }); static_assert((kHeads % kKVHeads) == 0, "query heads must be a multiple of key-value heads"); constexpr size_t kGroupHeads = kHeads / kKVHeads; // For each head (token, query), compute Q.K, softmax, and weighted V. pool.Run(0, kHeads * num_tokens_and_queries, [&](uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kHeads; const size_t batch_and_query_idx = task / kHeads; const size_t query_idx = batch_and_query_idx % num_queries; const size_t batch_idx = batch_and_query_idx / num_queries; const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2; KVCache& kv_cache = *kv_caches[query_idx]; float* HWY_RESTRICT q = activations.q.Batch(batch_and_query_idx) + head * kQStride; // Apply rope and scaling to Q. const size_t pos = batch_start + batch_idx; PostQK(q, pos, layer); MulByConst(kQueryScale, q, kQKVDim); // Compute Q.K scores, yielding "logits" (or scores) in head_att. float* HWY_RESTRICT head_att = activations.att.Batch(batch_and_query_idx) + head * kSeqLen; const size_t start_pos = pos - std::min(TConfig::kAttentionWindowSizes[layer] - 1, pos); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; const float* HWY_RESTRICT k2 = kv_cache.kv_cache.get() + kv_offset; const float score = Dot(q, k2, kQKVDim); head_att[pos2 % kSeqLen] = score; } // SoftMax. May be preceded by SoftCap. Yields "probabilities" in head_att. const size_t head_att_len = std::min(pos + 1, kSeqLen); if constexpr (TConfig::kAttCap > 0.0f) { LogitsSoftCap(TConfig::kAttCap, head_att, head_att_len); } Softmax(head_att, head_att_len); // Summation of v (kv_cache) weighted by probs (head_att) // into "encoded" (att_out). Compare gemma/modules.py: // encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, value_proj) float* HWY_RESTRICT att_out = activations.att_out.Batch(batch_and_query_idx) + head * kQKVDim; hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out)); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; float* HWY_RESTRICT v2 = kv_cache.kv_cache.get() + kv_offset + kQKVDim; MulByConstAndAdd(head_att[pos2 % kSeqLen], v2, att_out, kQKVDim); } }); // Sum encoded (att_out) over num_heads and head_dim (kQKVDim) // into output (layer_out). Compare gemma/modules.py: // attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', encoded) for (size_t batch_and_query_idx = 0; batch_and_query_idx < num_tokens_and_queries; ++batch_and_query_idx) { // TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after // rearranging the weights. float* HWY_RESTRICT att_out = activations.att_out.Batch(batch_and_query_idx); float* HWY_RESTRICT layer_out = activations.att_post2.Batch(batch_and_query_idx); // Head 0 (and potentially biases) -> layer_out. // attn_vec_einsum_w has shape [kHeads, kQKVDim, kModelDim]. MatVecT( layer_weights->attn_vec_einsum_w, 0, att_out, layer_weights->attention_output_biases.data_scale1(), activations.even_odd.All(), layer_out, pool); // Head 1 and following are added to layer_out. for (size_t head = 1; head < kHeads; ++head) { // NOTE: this is a single kModelDim temp output. If parallelized or using // MatMul, add per-thread storage. float* HWY_RESTRICT head_out = activations.att_post1.All(); // TODO: requires MatMul support for offsets. MatVec( layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim, att_out + head * kQKVDim, activations.even_odd.All(), head_out, pool); AddFrom(head_out, layer_out, kModelDim); } } } template HWY_NOINLINE void Activation(T* HWY_RESTRICT c1, T* HWY_RESTRICT c2, size_t count) { namespace hn = hwy::HWY_NAMESPACE; using DF = hn::ScalableTag; using VF = hn::Vec; // ActivationType::Gelu hn::Transform1(DF(), c1, count, c2, [](DF df, VF v, VF mul) HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); }); } template HWY_NOINLINE void FFW(Activations& activations, size_t num_tokens, const CompressedLayer* layer_weights, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.FFW"); constexpr size_t kModelDim = TConfig::kModelDim; constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim; // MatMul expects col-major B, which is what we have: kModelDim consecutive // elements in memory, repeated kFFHiddenDim times. constexpr size_t kColsA = kModelDim; constexpr size_t kColsB = kFFHiddenDim; HWY_DASSERT(num_tokens <= activations.bf_pre_ffw_rms_out.BatchSize()); const auto A = activations.bf_pre_ffw_rms_out.All(); const float scale = layer_weights->gating_einsum_w.scale(); const auto B1 = layer_weights->gating_einsum_w.data(); const auto B2 = B1 + kColsA * kColsB; auto C1 = activations.C1.All(); auto C2 = activations.C2.All(); constexpr bool kAddBias = TConfig::kFFBiases; const auto bias1 = layer_weights->ffw_gating_biases.data_scale1(); const auto bias2 = bias1 + kFFHiddenDim; // Will go through GELU. MatMul_4x4_Batch_Add(num_tokens, A, B1, scale, C1, bias1, pool); // What to multiply by. MatMul_4x4_Batch_Add(num_tokens, A, B2, scale, C2, bias2, pool); // Activation (Gelu) and multiply by gate. Store activations in C1. Activation(C1, C2, kFFHiddenDim * num_tokens); // Hidden layer -> output layer. MatMul_4x4_Batch_Add( num_tokens, C1, layer_weights->linear_w.data(), layer_weights->linear_w.scale(), activations.ffw_out.All(), layer_weights->ffw_output_biases.data_scale1(), pool); } // TODO: pass Activations.x instead of Activations. template HWY_NOINLINE void EmbedToken(int token, size_t batch_idx, size_t pos, const CompressedWeights& weights, Activations& activations) { constexpr size_t kModelDim = TConfig::kModelDim; GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling = EmbeddingScaling(); HWY_DASSERT(token >= 0); HWY_DASSERT(token < TConfig::kVocabSize); Decompress(weights.embedder_input_embedding, token * kModelDim, activations.x.Batch(batch_idx), kModelDim); MulByConst(kEmbScaling, activations.x.Batch(batch_idx), kModelDim); if constexpr (TConfig::kAbsolutePE) { AddAbsolutePositionalEmbeddings(activations.x.Batch(batch_idx), kModelDim, pos + batch_idx); }; } template HWY_NOINLINE void ResidualConnection( size_t num_tokens_and_queries, T* HWY_RESTRICT other, T* HWY_RESTRICT x, const CompressedLayer* layer_weights, bool is_attention) { constexpr size_t kModelDim = TConfig::kModelDim; // ResidualType::Add AddFromBatched(num_tokens_and_queries, other, x, kModelDim); } template HWY_NOINLINE void TransformerLayer( size_t num_tokens, size_t num_queries, size_t pos, size_t layer, const CompressedLayer* layer_weights, Activations& activations, const std::vector& kv_caches, hwy::ThreadPool& pool) { constexpr size_t kModelDim = TConfig::kModelDim; const size_t num_tokens_and_queries = num_tokens * num_queries; auto type = TConfig::kLayerConfig[layer]; size_t layer_of_type = NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer); RMSNormBatched(num_tokens_and_queries, activations.x.All(), layer_weights->pre_attention_norm_scale.data_scale1(), activations.pre_att_rms_out.All(), kModelDim); if (type == LayerAttentionType::kGemma) { Attention(pos, num_tokens, num_queries, layer_of_type, activations, layer_weights, kv_caches, pool); } else { // This Griffin layers should never exist unless the model is a Griffin // model. This conditional prevents the compiler from generating code for // this branch when building a non-Griffin model, since we have static // asserts about the query batch size for Griffin layers. if constexpr (TConfig::kGriffinLayers > 0) { static_assert(kQueryBatchSize == 1, "Griffin does not support batched queries."); GriffinRecurrent(pos, num_tokens, num_queries, layer_of_type, activations, layer_weights, kv_caches, pool); } } if (TConfig::kPostNorm == PostNormType::Scale) { RMSNormInplaceBatched( num_tokens_and_queries, layer_weights->post_attention_norm_scale.data_scale1(), activations.att_post2.All(), kModelDim); } ResidualConnection(num_tokens_and_queries, activations.att_post2.All(), activations.x.All(), layer_weights, /*is_attention=*/true); RMSNormBatched(num_tokens_and_queries, activations.x.All(), layer_weights->pre_ffw_norm_scale.data_scale1(), activations.bf_pre_ffw_rms_out.All(), kModelDim); FFW(activations, num_tokens_and_queries, layer_weights, pool); if (TConfig::kPostNorm == PostNormType::Scale) { RMSNormInplaceBatched(num_tokens_and_queries, layer_weights->post_ffw_norm_scale.data_scale1(), activations.ffw_out.All(), kModelDim); } ResidualConnection(num_tokens_and_queries, activations.ffw_out.All(), activations.x.All(), layer_weights, /*is_attention=*/false); } template HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t num_queries, size_t pos, const CompressedWeights& weights, Activations& activations, const std::vector& kv_caches, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Prefill"); HWY_DASSERT(num_queries <= kQueryBatchSize); const size_t minibatch_size = std::min(num_tokens, kBatchSize); // TODO: hoist pool.Run out of the loop, change the unit of work to batches. for (size_t i = 0; i < num_tokens; i += minibatch_size) { const size_t offset = i * num_queries; const size_t current_token_count = std::min( minibatch_size, num_tokens - i); pool.Run(0, current_token_count * num_queries, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR { EmbedToken(tokens[token_idx + offset], token_idx, pos + offset, weights, activations); }); for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { const auto* layer_weights = weights.GetLayer(layer); TransformerLayer( current_token_count, num_queries, pos + offset, layer, layer_weights, activations, kv_caches, pool); } } } // Compute the transformer for a batch of input tokens. During generation, // we usually have num_tokens == 1 (and also kBatchSize == 1). template HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens, size_t num_queries, size_t pos, const CompressedWeights& weights, Activations& activations, const std::vector& kv_caches, hwy::ThreadPool& pool, const LayersOutputFunc& layers_output) { const size_t num_tokens_and_queries = num_tokens * num_queries; if (layers_output) { for (size_t token_idx = 0; token_idx < num_tokens_and_queries; ++token_idx) { float token_f = tokens[token_idx]; layers_output(pos + token_idx, "Tokens", &token_f, 1); } } constexpr size_t kModelDim = TConfig::kModelDim; for (size_t token_idx = 0; token_idx < num_tokens_and_queries; ++token_idx) { EmbedToken(tokens[token_idx], token_idx, pos, weights, activations); } for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { const CompressedLayer* layer_weights = weights.GetLayer(layer); TransformerLayer(num_tokens, num_queries, pos, layer, layer_weights, activations, kv_caches, pool); if (layers_output) { const std::string block_name = "blocks." + std::to_string(layer); for (size_t token_idx = 0; token_idx < num_tokens_and_queries; ++token_idx) { layers_output(pos + token_idx, block_name, activations.x.Batch(token_idx), kModelDim); } } } RMSNormInplaceBatched(num_tokens_and_queries, weights.final_norm_scale.data_scale1(), activations.x.All(), kModelDim); if (layers_output) { for (size_t token_idx = 0; token_idx < num_tokens_and_queries; ++token_idx) { layers_output(pos + token_idx, "final_norm", activations.x.Batch(token_idx), kModelDim); } } } template void RangeChecks(size_t& max_tokens, size_t& max_generated_tokens, size_t& prompt_size) { if (!TConfig::kUseLocalAttention) { if (max_tokens > TConfig::kSeqLen) { fprintf(stderr, "WARNING: max_tokens %zu > kSeqLen %d, truncating.\n", max_tokens, TConfig::kSeqLen); max_tokens = static_cast(TConfig::kSeqLen); } } if (max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: max_generated_tokens %zu > max_tokens %zu, truncating.\n", max_generated_tokens, max_tokens); max_generated_tokens = max_tokens - 1; } if (!TConfig::kUseLocalAttention) { if (prompt_size + max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: prompt_size %zu + max_generated_tokens %zu > " "max_tokens %zu, truncating to ", prompt_size, max_generated_tokens, max_tokens); prompt_size = std::min(prompt_size, max_tokens - max_generated_tokens); fprintf(stderr, "%zu\n", prompt_size); } } HWY_ASSERT(prompt_size > 0); } // Placeholder for internal test3, do not remove template void GenerateT(const ByteStorageT& weights_u8, Activations& prefill, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, size_t pos, const size_t query_index_offset, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { constexpr size_t kAdjustedPrefillBatchSize = std::max((size_t)1, kPrefillBatchSize / kQueryBatchSize); static_assert(kAdjustedPrefillBatchSize >= kMinAdjustedPrefillBatchSize); const size_t num_queries = prompts.size(); HWY_DASSERT(num_queries <= kQueryBatchSize); pos *= num_queries; // position in (num_queries) interleaved token sequence. const CompressedWeights& weights = *reinterpret_cast*>(weights_u8.get()); size_t min_prompt_size = (size_t)-1; size_t max_prompt_size = 0; for (int i=0; i < prompts.size(); ++i) { min_prompt_size = std::min(min_prompt_size, prompts[i].size()); max_prompt_size = std::max(max_prompt_size, prompts[i].size()); } std::vector prompt; prompt.reserve(max_prompt_size * prompts.size()); for (int i = 0; i < max_prompt_size; ++i) { for (int j=0; j < prompts.size(); ++j) { if (i < prompts[j].size()) { prompt.push_back(prompts[j][i]); } else { prompt.push_back(0); } } } constexpr size_t kVocabSize = TConfig::kVocabSize; size_t max_tokens = runtime_config.max_tokens; size_t max_generated_tokens = runtime_config.max_generated_tokens; RangeChecks(max_tokens, max_generated_tokens, max_prompt_size); if (pos >= max_tokens) { fprintf(stderr, "Warning: pos %zu >= max_tokens %zu, aborting.\n", pos, max_tokens); return; } // If no sample_func is provided, we use top-k sampling. const SampleFunc sample_token = runtime_config.sample_func ? runtime_config.sample_func : [&](const float* logits, size_t vocab_size) -> int { return SampleTopK(logits, vocab_size, *runtime_config.gen, runtime_config.temperature, runtime_config.accept_token); }; std::vector reached_eos(num_queries); std::fill(reached_eos.begin(), reached_eos.end(), false); // pos indexes the KV cache. In the first turn of a chat, pos = 0. // // After the first turn, pos gets passed in with > 0 corresponding to the // current token position in the KV cache. // // pos_offset keeps track of the relative position within the turn, starting // at 0 each turn. During prefill, pos_offset corresponds to the index into // the prompt vector. // // In single-turn (non-chat) usage, pos and pos_offset start at 0 and are // always equal. size_t pos_offset = 0; // offset relative to pos // Used to keep track of how many tokens are processed per prompt, // so that we know when to start generating tokens. size_t single_prompt_pos_offset = 0; const double prefill_start = hwy::platform::Now(); // Prefill stops before prompt_size - 1 since the last prompt token is the // first input token for generation. while (single_prompt_pos_offset < min_prompt_size - 1) { const size_t batch_size = std::min( kPrefillBatchSize, min_prompt_size - 1 - single_prompt_pos_offset); const size_t batch_and_query_size = batch_size * num_queries; HWY_DASSERT(batch_size <= kPrefillBatchSize); HWY_DASSERT(single_prompt_pos_offset + batch_size <= min_prompt_size - 1); HWY_DASSERT(pos_offset + batch_size <= (min_prompt_size - 1) * num_queries); const int* batch_tokens = prompt.data() + pos_offset; Prefill( batch_tokens, batch_size, num_queries, pos, weights, prefill, kv_caches, pool); for (size_t idx = 0; idx < batch_size; ++idx) { bool all_tokens_eos = true; for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { if (reached_eos[query_idx]) continue; if (runtime_config.StreamToken( query_idx + query_index_offset, single_prompt_pos_offset, batch_tokens[idx * num_queries + query_idx], 0.0f)) { all_tokens_eos = false; } else { reached_eos[query_idx] = true; } } if (all_tokens_eos) { return; } } pos += batch_and_query_size; pos_offset += batch_and_query_size; single_prompt_pos_offset += batch_size; } timing_info.prefill_tok_sec = static_cast(pos_offset) / (hwy::platform::Now() - prefill_start); // Start generation. const double gen_start = hwy::platform::Now(); HWY_DASSERT(single_prompt_pos_offset == min_prompt_size - 1); size_t pos_gen_start = pos_offset; int token = prompt.at(pos_offset); std::vector::const_iterator first = prompt.begin() + pos_offset; std::vector::const_iterator last = first + num_queries; std::vector gen_tokens(first, last); // The loop below is not yet prepared for decode batch size > 1. HWY_ASSERT(kDecodeBatchSize == 1); bool all_tokens_eos = true; for (size_t i=0; i < num_queries; ++i) { if (reached_eos[i]) continue; if (runtime_config.StreamToken(i + query_index_offset, single_prompt_pos_offset, gen_tokens[i], 0.0f)) { all_tokens_eos = false; } else { reached_eos[i] = true; } } if (all_tokens_eos) { return; } for (size_t generate_pos = 0; generate_pos < max_tokens && generate_pos < max_generated_tokens; ++single_prompt_pos_offset, ++generate_pos) { Transformer( gen_tokens.data(), kDecodeBatchSize, num_queries, pos, weights, activations, kv_caches, pool, runtime_config.layers_output); float token_logit = 0.0f; // The condition below is always true if we are doing Prefill above. // We keep it here for clarity so that the code is correct even if Prefill // is disabled. bool all_tokens_eos = true; for (size_t i = 0; i < num_queries; ++i, ++pos, ++pos_offset) { const float* HWY_RESTRICT x = activations.x.Batch(i); float* HWY_RESTRICT logits = activations.logits.Batch(i); const size_t prompt_size = prompts[i].size(); const bool is_generating_phase = (single_prompt_pos_offset >= prompt_size - 1); if (is_generating_phase) { PROFILER_ZONE("Gen.Embedding"); // Compute logits from last layer activations. MatVec(weights.embedder_input_embedding, 0, x, activations.even_odd.All(), logits, pool); if constexpr (TConfig::kFinalCap > 0.0f) { LogitsSoftCap(TConfig::kFinalCap, logits, kVocabSize); } // Barrier: must have all logits so we can subtract max. Softmax(logits, kVocabSize); token = sample_token(logits, kVocabSize); token_logit = logits[token]; if (generate_pos == 0) { timing_info.time_to_first_token = hwy::platform::Now() - gen_start; } } else { // We would take this branch if we were not doing Prefill but would // process the tokens of the prompt one at a time. token = prompt.at(pos_offset); token_logit = 0.0f; } if (!reached_eos[i]) { if (!runtime_config.StreamToken(i + query_index_offset, single_prompt_pos_offset + 1, token, token_logit)) { token = runtime_config.eos_id; } if (token != runtime_config.eos_id) { all_tokens_eos = false; } else { reached_eos[i] = true; } } gen_tokens[i] = token; } if (all_tokens_eos) { break; } } timing_info.gen_tok_sec = static_cast(pos_offset - pos_gen_start) / (hwy::platform::Now() - gen_start); } template void GenerateSingleT(const ByteStorageT& weights_u8, Activations& prefill, Activations& activations, const RuntimeConfig& runtime_config, const std::vector& prompt, size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool, TimingInfo& timing_info) { // TODO: the input should also be span, not a vector. const hwy::Span prompt_span(const_cast(prompt.data()), prompt.size()); const hwy::Span> prompts(&prompt_span, 1); // TODO: also span of kv_cache. std::vector kv_caches = {&kv_cache}; const size_t query_index_offset = 0; GenerateT( weights_u8, prefill, activations, runtime_config, prompts, pos, query_index_offset, kv_caches, pool, timing_info); } template void GenerateBatchT(const ByteStorageT& weights_u8, Activations& prefill, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, size_t pos, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { // Disable query batching for Griffin models. constexpr size_t kQueryBatchSize = (TConfig::kGriffinLayers > 0) ? 1 : kBatchedQueryBatchSize; for (size_t i = 0; i < prompts.size(); i += kQueryBatchSize) { const size_t num_queries = std::min(prompts.size() - i, kQueryBatchSize); const hwy::Span> current_prompts( prompts.data() + i, num_queries); GenerateT(weights_u8, prefill, activations, runtime_config, current_prompts, pos, i, kv_caches, pool, timing_info); } } } // namespace HWY_NAMESPACE #if HWY_ONCE // These are extern functions defined by instantiations/*.cc, which include this // 'header' after defining GEMMA_CONFIG, which is for function overloading. void GenerateSingle( // NOLINT(misc-definitions-in-headers) GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& prefill, Activations& activations, const RuntimeConfig& runtime_config, const std::vector& prompt, size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateSingleT) (weights_u8, prefill, activations, runtime_config, prompt, pos, kv_cache, pool, timing_info); } void GenerateBatch( // NOLINT(misc-definitions-in-headers) GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& prefill, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, size_t pos, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateBatchT) (weights_u8, prefill, activations, runtime_config, prompts, pos, kv_caches, pool, timing_info); } #endif // HWY_ONCE } // namespace gcpp HWY_AFTER_NAMESPACE(); #endif // THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_