// Copyright 2023 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef HWY_DISABLED_TARGETS #define HWY_DISABLED_TARGETS HWY_SCALAR #endif #include #include #include #include #include #include "backprop/activations.h" #include "backprop/backward_scalar.h" #include "backprop/common_scalar.h" #include "backprop/forward_scalar.h" #include "backprop/sampler.h" #include "backprop/test_util.h" #include "gemma/configs.h" #include "gemma/weights_raw.h" #include "hwy/base.h" #include "hwy/contrib/thread_pool/thread_pool.h" // clang-format off #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "backprop/backward_test.cc" //NOLINT // clang-format on #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" #include "hwy/tests/test_util-inl.h" // After highway.h #include "backprop/backward-inl.h" #include "backprop/forward-inl.h" #include "gemma/ops.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { void TestMatMulVJP() { static const size_t kRows = 8; static const size_t kCols = 64; static const size_t kTokens = 5; hwy::ThreadPool pool(8); std::mt19937 gen(42); HWY_ALIGN std::array weights; HWY_ALIGN std::array x; HWY_ALIGN std::array dy; HWY_ALIGN std::array grad; HWY_ALIGN std::array dx; HWY_ALIGN std::array grad_scalar; HWY_ALIGN std::array dx_scalar; using TC = std::complex; std::array c_weights; std::array c_x; std::array c_y; for (int iter = 0; iter < 10; ++iter) { RandInit(weights, 1.0f * (1 << iter), gen); RandInit(x, 1.0f * (1 << iter), gen); RandInit(dy, 1.0f, gen); Complexify(weights, c_weights); Complexify(x, c_x); auto func = [&]() { MatMulT(c_weights.data(), c_x.data(), c_y.data(), kRows, kCols, kTokens); return DotT(dy.data(), c_y.data(), kTokens * kRows); }; hwy::ZeroBytes(&grad, sizeof(grad)); MatMulVJP(weights.data(), x.data(), dy.data(), kTokens, grad.data(), dx.data(), pool); TestGradient(dx, c_x, func, 5e-5, 5e-5, __LINE__); TestGradient(grad, c_weights, func, 5e-5, 5e-5, __LINE__); hwy::ZeroBytes(&grad_scalar, sizeof(grad_scalar)); MatMulVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(), dx_scalar.data(), kRows, kCols, kTokens); TestNear(dx, dx_scalar, 5e-5, 1e-4, __LINE__); TestNear(grad, grad_scalar, 5e-5, 5e-5, __LINE__); } } void TestMultiHeadMatMulVJP() { static const size_t kRows = 2; static const size_t kCols = 16; static const size_t kHeads = 4; static const size_t kTokens = 3; hwy::ThreadPool pool(8); std::mt19937 gen(42); HWY_ALIGN std::array weights; HWY_ALIGN std::array x; HWY_ALIGN std::array grad; HWY_ALIGN std::array dx; HWY_ALIGN std::array dy; HWY_ALIGN std::array grad_scalar; HWY_ALIGN std::array dx_scalar; using TC = std::complex; std::array c_weights; std::array c_x; std::array c_y; for (int iter = 0; iter < 10; ++iter) { RandInit(weights, 1.0f * (1 << iter), gen); RandInit(x, 1.0f * (1 << iter), gen); RandInit(dy, 1.0f, gen); Complexify(weights, c_weights); Complexify(x, c_x); auto func = [&]() { MultiHeadMatMul(c_weights.data(), c_x.data(), c_y.data(), kHeads, kRows, kCols, kTokens); return DotT(dy.data(), c_y.data(), kTokens * kRows); }; hwy::ZeroBytes(&grad, sizeof(grad)); MultiHeadMatMulVJP( weights.data(), x.data(), dy.data(), kTokens, grad.data(), dx.data(), pool); TestGradient(dx, c_x, func, 5e-5, 5e-5, __LINE__); TestGradient(grad, c_weights, func, 5e-5, 5e-5, __LINE__); hwy::ZeroBytes(&grad_scalar, sizeof(grad_scalar)); MultiHeadMatMulVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(), dx_scalar.data(), kHeads, kRows, kCols, kTokens); TestNear(dx, dx_scalar, 5e-5, 5e-5, __LINE__); TestNear(grad, grad_scalar, 5e-5, 5e-5, __LINE__); } } void TestRMSNormVJP() { static const size_t K = 2; static const size_t N = 64; hwy::ThreadPool pool(8); std::mt19937 gen(42); HWY_ALIGN std::array weights; HWY_ALIGN std::array x; HWY_ALIGN std::array grad; HWY_ALIGN std::array dx; HWY_ALIGN std::array dy; HWY_ALIGN std::array grad_scalar; HWY_ALIGN std::array dx_scalar; using TC = std::complex; std::array c_weights; std::array c_x; std::array c_y; for (int iter = 0; iter < 10; ++iter) { RandInit(weights, 1.0f * (1 << iter), gen); RandInit(x, 1.0f * (1 << iter), gen); RandInit(dy, 1.0f, gen); Complexify(weights, c_weights); Complexify(x, c_x); auto func = [&]() { RMSNormT(c_weights.data(), c_x.data(), c_y.data(), N, K); return DotT(dy.data(), c_y.data(), K * N); }; hwy::ZeroBytes(&grad, sizeof(grad)); RMSNormVJP(weights.data(), x.data(), dy.data(), N, K, grad.data(), dx.data(), pool); TestGradient(dx, c_x, func, 5e-5, 5e-5, __LINE__); TestGradient(grad, c_weights, func, 5e-5, 5e-5, __LINE__); hwy::ZeroBytes(&grad_scalar, sizeof(grad_scalar)); RMSNormVJPT(weights.data(), x.data(), dy.data(), grad_scalar.data(), dx_scalar.data(), N, K); TestNear(dx, dx_scalar, 0, 2e-5, __LINE__); TestNear(grad, grad_scalar, 0, 2e-5, __LINE__); } } struct TestConfig : public ConfigCapNoSSM { static constexpr int kSeqLen = 24; static constexpr int kVocabSize = 16; static constexpr int kModelDim = 32; static constexpr int kHeads = 3; static constexpr int kQKVDim = 16; static constexpr int kFFHiddenDim = 64; static constexpr std::array kLayerConfig = FixedLayerConfig<2>(LayerAttentionType::kGemma); static constexpr int kLayers = kLayerConfig.size(); static constexpr bool kAbsolutePE = false; static constexpr PostNormType kPostNorm = PostNormType::None; static constexpr int kKVHeads = 1; static constexpr int kGemmaLayers = kLayers; }; void TestEndToEnd() { std::mt19937 gen(42); hwy::ThreadPool pool(0); WeightsWrapper weights; WeightsWrapper grad; ActivationsWrapper forward0; ActivationsWrapper forward1; ActivationsWrapper backward; using TC = std::complex; WeightsWrapper c_weights; ForwardPass c_forward; ReverseSequenceSampler training_task({0, 0, 1, 1}); std::vector batch = training_task.SampleBatch(3, gen); for (const Prompt& prompt : batch) { ReverseSequenceSampler::LogPrompt(prompt); RandInit(weights.get(), 1.0f, gen); float loss0 = CrossEntropyLossForwardPass( prompt, weights.get(), forward0.get()); float loss1 = CrossEntropyLossForwardPass( prompt.tokens, prompt.context_size, weights.get(), forward1.get(), pool); EXPECT_NEAR(loss1, loss0, std::abs(loss0) * 2e-5); grad.clear(); CrossEntropyLossBackwardPass( prompt, weights.get(), forward1.get(), grad.get(), backward.get(), pool); Complexify(weights.get(), c_weights.get()); auto func = [&]() { return CrossEntropyLossForwardPass(prompt, c_weights.get(), c_forward); }; TestGradient(grad.get(), c_weights.get(), func, 2e-3f); } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace gcpp { HWY_BEFORE_TEST(BackwardTest); HWY_EXPORT_AND_TEST_P(BackwardTest, TestMatMulVJP); HWY_EXPORT_AND_TEST_P(BackwardTest, TestMultiHeadMatMulVJP); HWY_EXPORT_AND_TEST_P(BackwardTest, TestRMSNormVJP); HWY_EXPORT_AND_TEST_P(BackwardTest, TestEndToEnd); HWY_AFTER_TEST(); } // namespace gcpp #endif