// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_ #define THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_ #include #include #include #include #include "backprop/activations.h" #include "backprop/common_scalar.h" #include "backprop/prompt.h" #include "gemma/common.h" // EmbeddingScaling #include "gemma/weights.h" namespace gcpp { template void MatMulVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx, size_t N, size_t M, size_t K) { memset(dx, 0, M * K * sizeof(dx[0])); for (size_t i = 0; i < K; ++i) { for (size_t j = 0; j < N; ++j) { MulByConstAndAddT(dy[i * N + j], &x[i * M], &dw[j * M], M); MulByConstAndAddT(dy[i * N + j], &w[j * M], &dx[i * M], M); } } } template void MultiHeadMatMulVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx, size_t H, size_t N, size_t M, size_t K) { memset(dx, 0, H * M * K * sizeof(dx[0])); for (size_t i = 0; i < K; ++i) { for (size_t j = 0; j < N; ++j) { for (size_t h = 0; h < H; ++h) { MulByConstAndAddT(dy[i * N + j], &x[i * H * M + h * M], &dw[h * N * M + j * M], M); MulByConstAndAddT(dy[i * N + j], &w[h * N * M + j * M], &dx[i * H * M + h * M], M); } } } } template void RMSNormVJPT(const T* w, const T* x, const T* dy, T* dw, T* dx, size_t N, size_t K) { for (size_t i = 0; i < K; ++i) { constexpr T eps(1e-6); T ss = SquaredL2(x + i * N, N); ss = T(1.0) / std::sqrt(ss / T(N) + eps); for (size_t j = 0; j < N; ++j) { dw[j] += dy[i * N + j] * x[i * N + j] * ss; } const T ss3 = ss * ss * ss / T(N); T tmp = 0.0; for (size_t j = 0; j < N; ++j) { tmp += (T(1.0) + w[j]) * dy[i* N + j] * x[i * N + j]; } tmp *= ss3; for (size_t j = 0; j < N; ++j) { dx[i * N + j] = ss * (T(1.0) + w[j]) * dy[i* N + j] - tmp * x[i * N + j]; } } } template void SoftmaxVJPT(const T* y, T* dy, size_t N) { T sum = {}; for (size_t i = 0; i < N; ++i) { sum += y[i] * dy[i]; } for (size_t i = 0; i < N; ++i) { dy[i] = y[i] * (dy[i] - sum); } } template void SoftmaxVJPT(const T* y, T* dy, size_t N, size_t K) { for (size_t i = 0; i < K; ++i) { SoftmaxVJPT(y + i * N, dy + i * N, N); } } template T GeluDerivative(T x) { static const T kMul = 0.044715; static const T kSqrt2OverPi = 0.797884560804236; static const T kMul2 = kSqrt2OverPi * T(3.0) * kMul; const T x2 = x * x; const T x3 = x2 * x; const T arg = kSqrt2OverPi * (kMul * x3 + x); const T tanh = std::tanh(arg); const T cdf = T(0.5) * (T(1.0) + tanh); const T dtanh = T(1.0) - tanh * tanh; const T darg = kMul2 * x2 + kSqrt2OverPi; return T(0.5) * x * dtanh * darg + cdf; } template void GatedGeluVJP(const T* in, const T* d_out, T* d_in, size_t N, size_t K) { for (size_t i = 0; i < K; ++i) { const T* x1 = in + i * 2 * N; const T* x2 = x1 + N; const T* v = d_out + i * N; T* dx1 = d_in + i * 2 * N; T* dx2 = dx1 + N; for (size_t j = 0; j < N; ++j) { dx1[j] = v[j] * x2[j] * GeluDerivative(x1[j]); dx2[j] = v[j] * Gelu(x1[j]); } } } template void MaskedAttentionVJP(const T* qkv, const T* doutput, T* dqkv, size_t num_tokens, size_t kHeads, size_t qkv_dim, size_t seq_len) { for (size_t pos = 0; pos < num_tokens; ++pos) { const size_t offset = pos * (kHeads + 2) * qkv_dim; memset(dqkv + offset, 0, (kHeads + 1) * qkv_dim * sizeof(qkv[0])); } for (size_t head = 0; head < kHeads; ++head) { for (size_t pos = 0; pos < num_tokens; ++pos) { const size_t qoffs = (pos * (kHeads + 2) + head) * qkv_dim; const size_t aoffs = head * seq_len + pos * kHeads * seq_len; const T* q = qkv + qoffs; const T* dout = doutput + aoffs; T* dq = dqkv + qoffs; for (size_t pos2 = 0; pos2 <= pos; ++pos2) { const size_t koffs = (pos2 * (kHeads + 2) + kHeads) * qkv_dim; const T* k = qkv + koffs; T* dk = dqkv + koffs; MulByConstAndAddT(dout[pos2], k, dq, qkv_dim); MulByConstAndAddT(dout[pos2], q, dk, qkv_dim); } } } } template void MaskedSoftmaxVJPT(const T* y, T* dy, size_t num_tokens, size_t kHeads, size_t seq_len) { for (size_t head = 0; head < kHeads; ++head) { for (size_t pos = 0; pos < num_tokens; ++pos) { size_t offset = pos * kHeads * seq_len + head * seq_len; SoftmaxVJPT(y + offset, dy + offset, pos + 1); memset(dy + offset + pos + 1, 0, (seq_len - pos - 1) * sizeof(T)); } } } template void MixByAttentionVJP(const T* qkv, const T* attention, const T* doutput, T* dqkv, T* dattention, size_t num_tokens, size_t kHeads, size_t qkv_dim, size_t seq_len) { auto v_offset = [&](size_t pos) { return (pos * (kHeads + 2) + kHeads + 1) * qkv_dim; }; for (size_t pos = 0; pos < num_tokens; ++pos) { memset(&dqkv[v_offset(pos)], 0, qkv_dim * sizeof(qkv[0])); } for (size_t head = 0; head < kHeads; ++head) { for (size_t pos = 0; pos < num_tokens; ++pos) { const size_t offset = head * qkv_dim + pos * kHeads * qkv_dim; const size_t aoffset = head * seq_len + pos * kHeads * seq_len; const T* att = &attention[aoffset]; const T* dout = &doutput[offset]; T* datt = &dattention[aoffset]; for (size_t pos2 = 0; pos2 <= pos; ++pos2) { datt[pos2] = DotT(dout, &qkv[v_offset(pos2)], qkv_dim); MulByConstAndAddT(att[pos2], dout, &dqkv[v_offset(pos2)], qkv_dim); } } } } template void InputEmbeddingVJPT(const T* w, const std::vector& tokens, T scaling, const T* dy, T* dw, size_t N) { const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1; for (size_t i = 0; i < num_tokens; ++i) { int token = tokens[i]; MulByConstAndAddT(scaling, dy + i * N, dw + token * N, N); } } template void LayerVJP(const LayerWeightsPtrs& weights, const ForwardLayer& forward, const T* dy, LayerWeightsPtrs& grad, ForwardLayer& backward, size_t num_tokens) { const LayerConfig& layer_config = weights.layer_config; const size_t model_dim = layer_config.model_dim; const size_t seq_len = forward.input.Rows(); const size_t qkv_dim = layer_config.qkv_dim; const size_t kHeads = layer_config.heads; const size_t kFFHiddenDim = layer_config.ff_hidden_dim; const T kQueryScale = 1.0 / std::sqrt(T(qkv_dim)); MatMulVJPT(weights.linear_w.Packed(), forward.ffw_hidden_gated.Packed(), dy, grad.linear_w.Packed(), backward.ffw_hidden_gated.Packed(), model_dim, kFFHiddenDim, num_tokens); GatedGeluVJP(forward.ffw_hidden.Packed(), backward.ffw_hidden_gated.Packed(), backward.ffw_hidden.Packed(), kFFHiddenDim, num_tokens); MatMulVJPT(weights.gating_einsum_w.Packed(), forward.pre_ffw_rms_out.Packed(), backward.ffw_hidden.Packed(), grad.gating_einsum_w.Packed(), backward.pre_ffw_rms_out.Packed(), kFFHiddenDim * 2, model_dim, num_tokens); RMSNormVJPT(weights.pre_ffw_norm_scale.Packed(), forward.attention_out.Packed(), backward.pre_ffw_rms_out.Packed(), grad.pre_ffw_norm_scale.Packed(), backward.attention_out.Packed(), model_dim, num_tokens); AddFromT(dy, backward.attention_out.Packed(), num_tokens * model_dim); MultiHeadMatMulVJPT( weights.attn_vec_einsum_w.Packed(), forward.att_out.Packed(), backward.attention_out.Packed(), grad.attn_vec_einsum_w.Packed(), backward.att_out.Packed(), kHeads, model_dim, qkv_dim, num_tokens); MixByAttentionVJP(forward.qkv.Packed(), forward.att.Packed(), backward.att_out.Packed(), backward.qkv.Packed(), backward.att.Packed(), num_tokens, kHeads, qkv_dim, seq_len); MaskedSoftmaxVJPT(forward.att.Packed(), backward.att.Packed(), num_tokens, kHeads, seq_len); MaskedAttentionVJP(forward.qkv.Packed(), backward.att.Packed(), backward.qkv.Packed(), num_tokens, kHeads, qkv_dim, seq_len); for (size_t pos = 0; pos < num_tokens; ++pos) { T* qkv = backward.qkv.Packed() + pos * (kHeads + 2) * qkv_dim; MulByConstT(kQueryScale, qkv, kHeads * qkv_dim); } for (int pos = 0; pos < num_tokens; ++pos) { T* qkv = backward.qkv.Packed() + pos * (kHeads + 2) * qkv_dim; for (size_t h = 0; h <= kHeads; ++h) { Rope(qkv + h * qkv_dim, qkv_dim, -pos); } } MatMulVJPT(weights.qkv_einsum_w.Packed(), forward.pre_att_rms_out.Packed(), backward.qkv.Packed(), grad.qkv_einsum_w.Packed(), backward.pre_att_rms_out.Packed(), (kHeads + 2) * qkv_dim, model_dim, num_tokens); RMSNormVJPT(weights.pre_attention_norm_scale.Packed(), forward.input.Packed(), backward.pre_att_rms_out.Packed(), grad.pre_attention_norm_scale.Packed(), backward.input.Packed(), model_dim, num_tokens); AddFromT(backward.attention_out.Packed(), backward.input.Packed(), num_tokens * model_dim); } template void SoftcapVJPT(float cap, const T* y, T* dy, size_t N) { const T inv_cap = T{1.0} / static_cast(cap); for (size_t i = 0; i < N; ++i) { T scaled = y[i] * inv_cap; // tanh dy[i] *= (T{1.0} - scaled * scaled); } } template void CrossEntropyLossGrad(const T* x, T* dx, const Prompt& prompt, size_t V) { T scaling = -1.0 / std::log(2.0); const std::vector tokens = prompt.tokens; const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1; memset(dx, 0, V * num_tokens * sizeof(x[0])); for (size_t i = 0; i < num_tokens; ++i) { if (i + 1 < prompt.context_size) { continue; } const int next_token = tokens[i + 1]; dx[i * V + next_token] = scaling / x[i * V + next_token]; } } template void CrossEntropyLossBackwardPass(const Prompt& prompt, const ModelWeightsPtrs& weights, const ForwardPass& forward, ModelWeightsPtrs& grad, ForwardPass& backward) { const ModelConfig& config = weights.weights_config; const size_t model_dim = config.model_dim; const size_t vocab_size = config.vocab_size; const size_t layers = config.layer_configs.size(); const std::vector tokens = prompt.tokens; const size_t num_tokens = tokens.empty() ? 0 : tokens.size() - 1; CrossEntropyLossGrad(forward.probs.Packed(), backward.logits.Packed(), prompt, vocab_size); SoftmaxVJPT(forward.probs.Packed(), backward.logits.Packed(), vocab_size, num_tokens); if (config.final_cap > 0.0f) { for (size_t i = 0; i < num_tokens; ++i) { SoftcapVJPT(config.final_cap, forward.logits.Packed() + i * vocab_size, backward.logits.Packed() + i * vocab_size, vocab_size); } } MatMulVJPT(weights.embedder_input_embedding.Packed(), forward.final_norm_output.Packed(), backward.logits.Packed(), grad.embedder_input_embedding.Packed(), backward.final_norm_output.Packed(), vocab_size, model_dim, num_tokens); RMSNormVJPT( weights.final_norm_scale.Packed(), forward.final_layer_output.Packed(), backward.final_norm_output.Packed(), grad.final_norm_scale.Packed(), backward.final_layer_output.Packed(), model_dim, num_tokens); for (int layer = static_cast(layers) - 1; layer >= 0; --layer) { T* next_layer_grad = layer + 1 < layers ? backward.layers[layer + 1].input.Packed() : backward.final_layer_output.Packed(); LayerVJP(*weights.GetLayer(layer), forward.layers[layer], next_layer_grad, *grad.GetLayer(layer), backward.layers[layer], num_tokens); } const T kEmbScaling = EmbeddingScaling(model_dim); InputEmbeddingVJPT(weights.embedder_input_embedding.Packed(), tokens, kEmbScaling, backward.layers[0].input.Packed(), grad.embedder_input_embedding.Packed(), model_dim); } } // namespace gcpp #endif // THIRD_PARTY_GEMMA_CPP_GEMMA_BACKWARD_SCALAR_H_