// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // SIMD functions for Gemma/Griffin transformers. #include // sqrtf #include #include #include // std::min #include #include "compression/compress.h" #include "gemma/activations.h" #include "gemma/common.h" #include "gemma/configs.h" #include "gemma/gemma.h" #include "gemma/weights.h" // Placeholder for internal test4, do not remove #include "paligemma/image.h" #include "util/allocator.h" #include "util/basics.h" #include "util/threading.h" #include "hwy/aligned_allocator.h" #include "hwy/base.h" #include "hwy/bit_set.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/timer.h" // Include guard (still compiled once per target) #if defined(THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_) == \ defined(HWY_TARGET_TOGGLE) #ifdef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #undef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #else #define THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #endif #include "hwy/highway.h" // After highway.h #include "ops/matmul-inl.h" #include "ops/matvec-inl.h" #include "ops/ops-inl.h" #include "hwy/profiler.h" // also uses SIMD #ifndef GEMMA_TYPE #if HWY_IDE // Provide a definition so the IDE does not complain. #define GEMMA_TYPE float #else #error "Only include from instantiations/*.cc, which must define GEMMA_TYPE" #endif // HWY_IDE #endif // GEMMA_TYPE HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { // Different functions use different naming conventions for the number of // tokens. Functions that are query-independent, such as RMSNorm*, call the // count `num_interleaved`. Functions that are query-dependent, such as // `Attention`, use separate `num_tokens` and `num_queries`. // TODO: add batch query support for Griffin (QueriesPos). template HWY_NOINLINE void GriffinRecurrent(size_t batch_start, size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights, const KVCaches& kv_caches) { PROFILER_ZONE("Gen.Griffin"); KVCache& kv_cache = kv_caches[0]; hwy::ThreadPool& pool = activations.env->Pool(); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; const size_t model_dim = layer_weights->layer_config.model_dim; const size_t conv_1d_width = layer_weights->layer_config.conv1d_width; const size_t heads = layer_weights->layer_config.heads; // X / Y linear layers. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); TwoMatVecAdd(layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0, model_dim, model_dim, activations.pre_att_rms_out.Batch(batch_idx), /*add0=*/layer_weights->griffin.linear_x_biases.data_scale1(), /*add1=*/layer_weights->griffin.linear_y_biases.data_scale1(), /*out0=*/x, /*out1=*/y, pool); Gelu(y, model_dim); } // Conv1D. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); HWY_FULL(float) df; HWY_DASSERT(model_dim % hn::Lanes(df) == 0); const size_t layer_offset = layer * model_dim * (conv_1d_width - 1); // cache[i] = input at time t-i. float* HWY_RESTRICT cache[HWY_MAX(conv_1d_width, 1)]; cache[0] = x; for (size_t i = 1; i < conv_1d_width; i++) { cache[i] = kv_cache.conv1d_cache.get() + layer_offset + ((pos + conv_1d_width - 1 - i) % (conv_1d_width - 1)) * model_dim; } for (size_t i = 0; i < model_dim; i += hn::Lanes(df)) { auto xv = hn::Load(df, x + i); auto accum0 = hn::Load(df, layer_weights->griffin.conv_biases.data_scale1() + i); auto accum1 = hn::Zero(df); HWY_ASSERT_M(conv_1d_width % 2 == 0, "Conv width must be even"); for (size_t l = 0; 2 * l < conv_1d_width; l++) { auto wv0 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (conv_1d_width - 1 - 2 * l) * model_dim + i); auto wv1 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (conv_1d_width - 2 - 2 * l) * model_dim + i); accum0 = hn::MulAdd(wv0, hn::Load(df, cache[l * 2] + i), accum0); accum1 = hn::MulAdd(wv1, hn::Load(df, cache[l * 2 + 1] + i), accum1); } hn::Store(hn::Add(accum0, accum1), df, x + i); hn::Store(xv, df, cache[HWY_MAX(conv_1d_width, 1) - 1] + i); } } // RGLRU for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* HWY_RESTRICT gate_x = activations.griffin_gate_x.Batch(batch_idx); float* HWY_RESTRICT a = activations.griffin_multiplier.Batch(batch_idx); float* HWY_RESTRICT rnn_state = kv_cache.rglru_cache.get() + layer * model_dim; pool.Run(0, heads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR { const size_t kHeadDim = model_dim / heads; const size_t kMatrixSize = kHeadDim * kHeadDim; size_t head_offset = head * kHeadDim; TwoOfsMatVecAddLoop( layer_weights->griffin.gate_w, kMatrixSize * head, kMatrixSize * (heads + head), kHeadDim, kHeadDim, x + head_offset, /*add0=*/layer_weights->griffin.gate_biases.data_scale1() + head_offset, /*add1=*/layer_weights->griffin.gate_biases.data_scale1() + model_dim + head_offset, /*out0=*/gate_x + head_offset, /*out1=*/a + head_offset); Sigmoid(gate_x + head_offset, kHeadDim); Sigmoid(a + head_offset, kHeadDim); const auto fn_mul = [](D d, hn::Vec x, hn::Vec gate_x) HWY_ATTR { return hn::Mul(x, gate_x); }; hn::Transform1(D(), a + head_offset, kHeadDim, layer_weights->griffin.a.data_scale1() + head_offset, fn_mul); hn::Transform1(D(), x + head_offset, kHeadDim, gate_x + head_offset, fn_mul); // RNN scan HWY_FULL(float) df; HWY_DASSERT(kHeadDim % hn::Lanes(df) == 0); for (size_t i = 0; i < kHeadDim; i += hn::Lanes(df)) { auto log_a = hn::Load(df, a + head_offset + i); auto gated_x = hn::Load(df, x + head_offset + i); auto rnn = hn::Load(df, rnn_state + head_offset + i); auto a = hn::Exp(df, log_a); auto x_multiplier = hn::Sqrt(hn::NegMulAdd(a, a, hn::Set(df, 1.0f))); if (pos == 0) { x_multiplier = hn::Set(df, 1.0f); } auto new_x = hn::MulAdd(x_multiplier, gated_x, hn::Mul(a, rnn)); hn::Store(new_x, df, rnn_state + head_offset + i); // Join branches. auto yv = hn::Load(df, y + head_offset + i); auto pre_out = hn::Mul(yv, new_x); hn::Store(pre_out, df, x + head_offset + i); } }); } // Final linear layer. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* out_ptr = activations.att_sums.Batch(batch_idx); MatVecAdd(layer_weights->griffin.linear_out_w, 0, model_dim, model_dim, x, layer_weights->griffin.linear_out_biases.data_scale1(), out_ptr, pool); } } // Wrapper class; holds arguments in member variables to shorten call sites. template class GemmaAttention { // The attention window usually starts at 0 unless `pos` is larger than // the attention window size, then it is `pos` - window_size + 1. HWY_INLINE size_t StartPos(size_t pos, size_t layer) { const size_t att_window_size = activations_.weights_config.attention_window_sizes[layer]; return pos - std::min(att_window_size - 1, pos); } template HWY_INLINE void PositionalEncodingQK(const U* qk, size_t pos, size_t layer, const float mul, U* qk_out) { const float* inv_timescale = activations_.inv_timescale.Const(); // PostQKType::Rope (void)layer; if (layer_weights_.layer_config.post_qk == PostQKType::HalfRope) { hwy::CopyBytes(qk, qk_out, layer_config_.qkv_dim * sizeof(*qk)); Rope(qk_out, layer_config_.qkv_dim / 2, inv_timescale, pos); MulByConst(mul, qk_out, layer_config_.qkv_dim); } else { RopeAndMulBy(mul, qk, layer_config_.qkv_dim, inv_timescale, pos, qk_out); } } // Fills activations.q and computes KV. For is_mha_, a single MatMul suffices // and we later copy KV from q to KVCache. Otherwise, a second MatMul writes // KV directly to KVCache. HWY_NOINLINE void ComputeQKV(const size_t num_interleaved) { PROFILER_ZONE("Gen.Attention.QKV"); const size_t model_dim = layer_config_.model_dim; const size_t qkv_dim = layer_config_.qkv_dim; const size_t heads = layer_config_.heads; const size_t kv_heads = layer_config_.kv_heads; const auto pre_att_rms_out = ConstMatFromBatch(num_interleaved, activations_.pre_att_rms_out); auto w_q1 = layer_weights_.qkv_einsum_w.data() ? ConstMatFromWeights(layer_weights_.qkv_einsum_w) : ConstMatFromWeights(layer_weights_.qkv_einsum_w1); // The original qkv_einsum_w has shape [(heads + kv_heads * 2), kKQVDim, // model_dim], which we reshaped to (heads + kv_heads * 2) * kKQVDim rows. // We must shrink to the actual size because MatMul verifies // `B.extents.rows == C.Cols()`. If MHA, `QStride() == 3 * qkv_dim` and all // rows are used. Otherwise, `QStride() == qkv_dim` and KV will be // computed in the second MatMul. const size_t w1_rows = heads * layer_config_.QStride(); w_q1.ShrinkRows(w1_rows); MatMul(pre_att_rms_out, w_q1, /*add=*/nullptr, *activations_.env, RowPtrFromBatch(activations_.q)); if (is_mha_) { // Multi-Head Attention a.k.a. "use_qkv_einsum" computed QKV already. } else { auto w_q2 = layer_weights_.qkv_einsum_w.data() ? ConstMatFromWeights(layer_weights_.qkv_einsum_w, w1_rows * model_dim) : ConstMatFromWeights(layer_weights_.qkv_einsum_w2); // KV structure is [k, v, k, v, ....] = kv_heads pairs of (k, v). const size_t w_rows_kv_cols = kv_heads * 2 * qkv_dim; w_q2.ShrinkRows(w_rows_kv_cols); // Single query and no wraparound means we can use a matmul and write // directly into the KV cache with a stride of cache_pos_size_. if (num_queries_ == 1 && queries_pos_[0] + num_tokens_ <= div_seq_len_.GetDivisor()) { const size_t kv_ofs = queries_pos_[0] * cache_pos_size_ + layer_ * cache_layer_size_; float* HWY_RESTRICT kv = kv_caches_[0].kv_cache.get() + kv_ofs; RowPtrF kv_rows(kv, w_rows_kv_cols); kv_rows.SetStride(cache_pos_size_); MatMul(pre_att_rms_out, w_q2, /*add=*/nullptr, *activations_.env, kv_rows); } else { // Proceed row by row because there will be wraparound. for (size_t interleaved_idx = 0; interleaved_idx < num_interleaved; ++interleaved_idx) { const float* x = activations_.pre_att_rms_out.Batch(interleaved_idx); const size_t query_idx = interleaved_idx % num_queries_; const size_t batch_idx = interleaved_idx / num_queries_; KVCache& kv_cache = kv_caches_[query_idx]; const size_t cache_pos = div_seq_len_.Remainder(queries_pos_[query_idx] + batch_idx); const size_t kv_offset = cache_pos * cache_pos_size_ + layer_ * cache_layer_size_; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; if (layer_weights_.qkv_einsum_w.data()) { MatVec(layer_weights_.qkv_einsum_w, heads * qkv_dim * model_dim, w_rows_kv_cols, model_dim, x, kv, pool_); } else { MatVec(layer_weights_.qkv_einsum_w2, 0, // w_rows_kv_cols, model_dim, x, kv, pool_); } } } } // !is_mha_ // Apply positional encodings for K (and copy KV to cache if MHA). pool_.Run(0, kv_heads * num_interleaved, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t head = task % kv_heads; const size_t interleaved_idx = task / kv_heads; const size_t query_idx = interleaved_idx % num_queries_; const size_t batch_idx = interleaved_idx / num_queries_; const size_t pos = queries_pos_[query_idx] + batch_idx; const size_t cache_pos = div_seq_len_.Remainder(pos); const size_t kv_offset = cache_pos * cache_pos_size_ + layer_ * cache_layer_size_ + head * qkv_dim * 2; KVCache& kv_cache = kv_caches_[query_idx]; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; const float* HWY_RESTRICT mha_kv = activations_.q.Batch(interleaved_idx) + head * q_stride_ + qkv_dim; // Copy from `q` if MHA, or apply in-place. PositionalEncodingQK(is_mha_ ? mha_kv : kv, pos, layer_, 1.0f, kv); // If MHA, also copy V into KVCache. if (is_mha_) { hwy::CopyBytes(mha_kv + qkv_dim, kv + qkv_dim, qkv_dim * sizeof(*kv)); } }); } // Computes Q.K scores, which are "logits" (or scores) stored to head_att. HWY_INLINE void QDotK(const size_t start_pos, const size_t last_pos, const size_t head_offset, const float* HWY_RESTRICT q, const KVCache& kv_cache, float* HWY_RESTRICT head_att) { if (HWY_LIKELY(last_pos < activations_.seq_len)) { // Slightly faster: no wraparound. for (size_t pos = start_pos; pos <= last_pos; ++pos) { const size_t kv_offset = pos * cache_pos_size_ + layer_ * cache_layer_size_ + head_offset; const float* HWY_RESTRICT k = &kv_cache.kv_cache[kv_offset]; const float score = Dot(q, k, layer_config_.qkv_dim); head_att[pos] = score; } } else { for (size_t pos = start_pos; pos <= last_pos; ++pos) { const size_t cache_pos = div_seq_len_.Remainder(pos); const size_t kv_offset = cache_pos * cache_pos_size_ + layer_ * cache_layer_size_ + head_offset; const float* HWY_RESTRICT k = &kv_cache.kv_cache[kv_offset]; const float score = Dot(q, k, layer_config_.qkv_dim); head_att[pos % activations_.seq_len] = score; } } } // Accumulates the sum of v (from `kv_cache`) * probability (`head_att`) into // `att_out`. Equivalent in gemma/modules.py: // encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, value_proj) HWY_INLINE void WeightedSumV(const size_t start_pos, const size_t last_pos, const float* HWY_RESTRICT head_att, const size_t layer, const size_t head_offset, const hwy::Divisor& div_seq_len, const KVCache& kv_cache, float* HWY_RESTRICT att_out) const { hwy::ZeroBytes(att_out, layer_config_.qkv_dim * sizeof(*att_out)); if (HWY_LIKELY(last_pos < activations_.seq_len)) { // Slightly faster: no wraparound. for (size_t pos = start_pos; pos <= last_pos; ++pos) { const size_t kv_offset = pos * cache_pos_size_ + layer * cache_layer_size_ + head_offset; const float* HWY_RESTRICT v = kv_cache.kv_cache.get() + kv_offset + layer_config_.qkv_dim; MulByConstAndAdd(head_att[pos], v, att_out, layer_config_.qkv_dim); } } else { for (size_t pos = start_pos; pos <= last_pos; ++pos) { const size_t cache_pos = div_seq_len.Remainder(pos); const size_t kv_offset = cache_pos * cache_pos_size_ + layer * cache_layer_size_ + head_offset; const float* HWY_RESTRICT v = kv_cache.kv_cache.get() + kv_offset + layer_config_.qkv_dim; MulByConstAndAdd(head_att[pos % activations_.seq_len], v, att_out, layer_config_.qkv_dim); } } } HWY_NOINLINE void DotSoftmaxWeightedSum(const size_t num_interleaved) { PROFILER_ZONE("Gen.Attention.DotSoftmax"); const float query_scale = ChooseQueryScale(activations_.weights_config); // A "head group" in the context of GQA refers to a collection of query // heads that share the same key and value heads. const size_t kHeadGroups = layer_config_.heads / layer_config_.kv_heads; // For each head (token, query), compute Q.K, softmax, and weighted V. pool_.Run(0, layer_config_.heads * num_interleaved, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t head = task % layer_config_.heads; const size_t interleaved_idx = task / layer_config_.heads; const size_t query_idx = interleaved_idx % num_queries_; const size_t batch_idx = interleaved_idx / num_queries_; const size_t head_offset = (head / kHeadGroups) * layer_config_.qkv_dim * 2; KVCache& kv_cache = kv_caches_[query_idx]; float* HWY_RESTRICT q = activations_.q.Batch(interleaved_idx) + head * q_stride_; // Apply rope and scaling to Q. const size_t pos = queries_pos_[query_idx] + batch_idx; PositionalEncodingQK(q, pos, layer_, query_scale, q); const size_t start_pos = StartPos(pos, layer_); size_t last_pos = pos; const size_t prefix_end = queries_prefix_end_[query_idx]; if (prefix_end > 0 && prefix_end - 1 > last_pos) { // last_pos in QDotK and WeightedSumV is inclusive. last_pos = prefix_end - 1; } float* HWY_RESTRICT head_att = activations_.att.Batch(interleaved_idx) + head * activations_.seq_len; QDotK(start_pos, last_pos, head_offset, q, kv_cache, head_att); // SoftMax with optional SoftCap yields "probabilities" in // head_att. const size_t head_att_len = std::min(last_pos + 1, activations_.seq_len); MaybeLogitsSoftCap(activations_.weights_config.att_cap, head_att, head_att_len); Softmax(head_att, head_att_len); float* HWY_RESTRICT att_out = activations_.att_out.Batch(interleaved_idx) + head * layer_config_.qkv_dim; WeightedSumV(start_pos, last_pos, head_att, layer_, head_offset, div_seq_len_, kv_cache, att_out); }); } // Sums encoded (`att_out`) over num_heads (`layer_config_.heads`) and // head_dim // (`layer_config_.qkv_dim`) into output (`layer_out`). HWY_NOINLINE void SumHeads(const size_t num_interleaved) { PROFILER_ZONE("Gen.Attention.SumHeads"); // att_weights and att_out are concatenated heads, each of length // layer_config_.qkv_dim. Thus the [num_interleaved, // layer_config_.model_dim] matmul output is the sum over heads. Compare // gemma/modules.py: attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', // encoded) HWY_DASSERT(layer_config_.model_dim > 0); HWY_DASSERT(layer_config_.heads > 0); HWY_DASSERT(layer_config_.qkv_dim > 0); HWY_DASSERT(layer_weights_.att_weights.data() != nullptr); HWY_DASSERT(activations_.att_out.All() != nullptr); HWY_DASSERT(activations_.att_sums.All() != nullptr); const float* add = layer_weights_.layer_config.softmax_attn_output_biases ? layer_weights_.attention_output_biases.data_scale1() : nullptr; MatMul(ConstMatFromBatch(num_interleaved, activations_.att_out), ConstMatFromWeights(layer_weights_.att_weights), add, *activations_.env, RowPtrFromBatch(activations_.att_sums)); } public: // Constructor with explicit initialization of queries_prefix_end. This is // needed for the Prefix-LM style attention. For standard causal attention, // the other constructor can be used. GemmaAttention(const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) : GemmaAttention(queries_pos, &queries_prefix_end, num_tokens, layer, activations, layer_weights, div_seq_len, kv_caches) {} // Constructor with default initialization to 0 for queries_prefix_end. GemmaAttention(const QueriesPos& queries_pos, size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) : GemmaAttention(queries_pos, nullptr, num_tokens, layer, activations, layer_weights, div_seq_len, kv_caches) {} // Full attention computation in three steps. HWY_INLINE void operator()() { const size_t num_interleaved = num_tokens_ * num_queries_; ComputeQKV(num_interleaved); DotSoftmaxWeightedSum(num_interleaved); SumHeads(num_interleaved); } private: // Delegated Constructor that does most of the common work. GemmaAttention(const QueriesPos& queries_pos, const QueriesPos* queries_prefix_end, size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) : queries_pos_(queries_pos), num_queries_(queries_pos.size()), num_tokens_(num_tokens), layer_(layer), layer_config_(layer_weights->layer_config), q_stride_(layer_config_.QStride()), cache_layer_size_(layer_weights->layer_config.CacheLayerSize()), cache_pos_size_(activations.cache_pos_size), is_mha_(layer_config_.IsMHA()), activations_(activations), layer_weights_(*layer_weights), div_seq_len_(div_seq_len), kv_caches_(kv_caches), pool_(activations.env->Pool()) { HWY_DASSERT(num_queries_ <= kv_caches_.size()); HWY_DASSERT_M((layer_config_.heads % layer_config_.kv_heads) == 0, "query heads must be a multiple of key-value heads"); if (queries_prefix_end != nullptr) { queries_prefix_end_ = *queries_prefix_end; } else { queries_prefix_end_vec_.assign(num_queries_, 0); queries_prefix_end_ = QueriesPos(queries_prefix_end_vec_.data(), queries_prefix_end_vec_.size()); } } const QueriesPos& queries_pos_; std::vector queries_prefix_end_vec_; QueriesPos queries_prefix_end_; const size_t num_queries_; const size_t num_tokens_; const size_t layer_; const LayerConfig& layer_config_; const size_t q_stride_ = 0; const size_t cache_layer_size_ = 0; const size_t cache_pos_size_ = 0; const bool is_mha_ = false; Activations& activations_; const LayerWeightsPtrs& layer_weights_; const hwy::Divisor& div_seq_len_; const KVCaches& kv_caches_; hwy::ThreadPool& pool_; }; template HWY_NOINLINE void Attention( LayerAttentionType type, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) { if (type == LayerAttentionType::kGemma) { GemmaAttention(queries_pos, queries_prefix_end, num_tokens, layer, activations, layer_weights, div_seq_len, kv_caches)(); } else { // Only reached if the model is Griffin. // The kv_caches are allocated only for the griffin layers, so we need to // map the layer index to the griffin layer index. auto type = layer_weights->layer_config.type; size_t layer_of_type = activations.weights_config.NumLayersOfTypeBefore(type, layer); HWY_ASSERT(queries_pos.size() == 1); GriffinRecurrent(queries_pos[0], num_tokens, layer_of_type, activations, layer_weights, kv_caches); } } // Wrapper class; holds arguments in member variables to shorten call sites. // The main differences to GemmaAttention are: // - no KV Cache necessary, attention is always all-to-all and not causal. // - no potential wrap-around, attention always goes from 0 to kSeqLen. // - no need for batching, as we are always computing attention for kSeqLen // tokens. // This results in a much simpler implementation. However, to avoid duplicating // code, we should still consider merging the two classes. // TODO(keysers): Refactor to share code with GemmaAttention. template class VitAttention { // Computes Q, K, V for all heads, stored in activations_.q. HWY_NOINLINE void ComputeQKV() { PROFILER_ZONE("Gen.VitAttention.QKV"); auto& qkv = activations_.q; HWY_ASSERT(qkv.BatchSize() == num_tokens_); HWY_ASSERT(qkv.Cols() == layer_config_.heads * 3 * layer_config_.qkv_dim); MatMul(ConstMatFromBatch(num_tokens_, activations_.pre_att_rms_out), ConstMatFromWeights(layer_weights_.vit.qkv_einsum_w), layer_weights_.vit.qkv_einsum_b.data_scale1(), *activations_.env, RowPtrFromBatch(qkv)); } HWY_NOINLINE void DotSoftmaxWeightedSum() { const size_t qkv_dim = layer_config_.qkv_dim; const size_t heads = layer_config_.heads; HWY_ASSERT_M(heads == layer_config_.kv_heads, "Vit expects MHA"); const size_t seq_len = activations_.seq_len; const float query_scale = 1.0f / sqrtf(static_cast(qkv_dim)); PROFILER_ZONE("Gen.VitAttention.DotSoftmax"); // Compute Q.K, softmax, and weighted V. pool_.Run(0, layer_config_.heads * num_tokens_, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t head = task % layer_config_.heads; const size_t token = task / layer_config_.heads; // Compute Q.K scores, which are "logits" stored in head_att. float* HWY_RESTRICT q = activations_.q.Batch(token) + head * 3 * qkv_dim; MulByConst(query_scale, q, qkv_dim); float* HWY_RESTRICT head_att = activations_.att.Batch(token) + head * activations_.seq_len; for (size_t i = 0; i < seq_len; ++i) { float* HWY_RESTRICT k = activations_.q.Batch(i) + head * 3 * qkv_dim + qkv_dim; head_att[i] = Dot(q, k, qkv_dim); // score = q.k } // SoftMax yields "probabilities" in head_att. Softmax(head_att, seq_len); // Compute weighted sum of v into att_out. float* HWY_RESTRICT att_out = activations_.att_out.Batch(token) + head * qkv_dim; hwy::ZeroBytes(att_out, qkv_dim * sizeof(*att_out)); for (size_t i = 0; i < seq_len; ++i) { float* HWY_RESTRICT v = activations_.q.Batch(i) + head * 3 * qkv_dim + 2 * qkv_dim; MulByConstAndAdd(head_att[i], v, att_out, qkv_dim); } }); } // Sums encoded (`att_out`) over num_heads (`layer_config_.heads`) and // head_dim // (`layer_config_.qkv_dim`) into output (`att_sums`). HWY_NOINLINE void SumHeads() { PROFILER_ZONE("Gen.VitAttention.SumHeads"); auto* bias = layer_weights_.vit.attn_out_b.data_scale1(); // att_weights and att_out are concatenated heads, each of length // layer_config_.qkv_dim. Thus the [num_tokens_, layer_config_.model_dim] // matmul output is the sum over heads. auto att_out = ConstMatFromBatch(num_tokens_, activations_.att_out); auto att_weights = ConstMatFromWeights(layer_weights_.vit.attn_out_w); auto att_sums = RowPtrFromBatch(activations_.att_sums); MatMul(att_out, att_weights, bias, *activations_.env, att_sums); } public: VitAttention(size_t num_tokens, size_t layer, Activations& activations, const LayerWeightsPtrs* layer_weights) : num_tokens_(num_tokens), layer_(layer), activations_(activations), layer_weights_(*layer_weights), layer_config_(layer_weights->layer_config), pool_(activations.env->Pool()) {} HWY_INLINE void operator()() { ComputeQKV(); DotSoftmaxWeightedSum(); SumHeads(); } private: const size_t num_tokens_; const size_t layer_; Activations& activations_; const LayerWeightsPtrs& layer_weights_; const LayerConfig& layer_config_; hwy::ThreadPool& pool_; }; template HWY_NOINLINE void Activation(ActivationType activation, T* HWY_RESTRICT c1, T* HWY_RESTRICT c2, size_t count) { PROFILER_ZONE("Gen.Activation"); namespace hn = hwy::HWY_NAMESPACE; using DF = hn::ScalableTag; using VF = hn::Vec; // ActivationType::Gelu if (c2 == nullptr) { // No multiplier, just Gelu. Gelu(c1, count); return; }; // Has multiplier, Gelu(c1) * c2. hn::Transform1(DF(), c1, count, c2, [](DF df, VF v, VF mul) HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); }); } template HWY_NOINLINE void FFWNoVit(Activations& activations, size_t num_interleaved, const LayerWeightsPtrs* layer_weights) { PROFILER_ZONE("Gen.FFW"); const size_t model_dim = layer_weights->layer_config.model_dim; const size_t ffh_hidden_dim = layer_weights->layer_config.ff_hidden_dim; using WeightType = T; HWY_DASSERT(num_interleaved <= activations.bf_pre_ffw_rms_out.BatchSize()); const bool add_bias = layer_weights->layer_config.ff_biases; const float* bias1 = add_bias ? layer_weights->ffw_gating_biases.data_scale1() : nullptr; const float* bias2 = add_bias ? bias1 + ffh_hidden_dim : nullptr; const float* output_bias = add_bias ? layer_weights->ffw_output_biases.data_scale1() : nullptr; // Define slightly more readable names for the weights and activations. const auto x = ConstMatFromBatch(num_interleaved, activations.bf_pre_ffw_rms_out); auto hidden_activations = RowPtrFromBatch(activations.C1); auto multiplier = RowPtrFromBatch(activations.C2); auto ffw_out = RowPtrFromBatch(activations.ffw_out); // gating_einsum_w holds two half-matrices. We plan to change the importer to // avoid this confusion by splitting into gating_einsum_w1 and // gating_einsum_w2. const bool split = !!layer_weights->gating_einsum_w.data(); auto w1 = split ? ConstMatFromWeights(layer_weights->gating_einsum_w) : ConstMatFromWeights(layer_weights->gating_einsum_w1); auto w2 = split ? ConstMatFromWeights(layer_weights->gating_einsum_w, model_dim * ffh_hidden_dim) : ConstMatFromWeights(layer_weights->gating_einsum_w2); if (split) { // Ensure that B.Extents().row matches C.Cols() because MatMul checks that. w1.ShrinkRows(ffh_hidden_dim); w2.ShrinkRows(ffh_hidden_dim); } auto w_output = ConstMatFromWeights(layer_weights->linear_w); // Compute the hidden layer activations. MatMul(x, w1, bias1, *activations.env, hidden_activations); MatMul(x, w2, bias2, *activations.env, multiplier); // Activation (Gelu) and maybe multiply by gate. Store activations in act. Activation(layer_weights->layer_config.activation, hidden_activations.Row(0), multiplier.Row(0), ffh_hidden_dim * num_interleaved); // Hidden layer -> output layer. auto activations_mat = MakeConstMat( hidden_activations.Row(0), Extents2D(num_interleaved, ffh_hidden_dim)); MatMul(activations_mat, w_output, output_bias, *activations.env, ffw_out); } // Same as FFWNoVit, but with different layer_weights members and no second // gating matrix. template HWY_NOINLINE void FFWVit(Activations& activations, size_t num_interleaved, const LayerWeightsPtrs* layer_weights) { PROFILER_ZONE("Gen.FFW"); const size_t ff_hidden_dim = layer_weights->layer_config.ff_hidden_dim; using WeightType = typename LayerWeightsPtrs::WeightF32OrBF16; HWY_DASSERT(num_interleaved <= activations.bf_pre_ffw_rms_out.BatchSize()); const bool add_bias = layer_weights->layer_config.ff_biases; const float* bias1 = add_bias ? layer_weights->vit.linear_0_b.data_scale1() : nullptr; const float* output_bias = add_bias ? layer_weights->vit.linear_1_b.data_scale1() : nullptr; // Define slightly more readable names for the weights and activations. const auto x = ConstMatFromBatch(num_interleaved, activations.bf_pre_ffw_rms_out); auto hidden_activations = RowPtrFromBatch(activations.C1); auto ffw_out = RowPtrFromBatch(activations.ffw_out); auto w1 = ConstMatFromWeights(layer_weights->vit.linear_0_w); auto w_output = ConstMatFromWeights(layer_weights->vit.linear_1_w); // Compute the hidden layer activations. MatMul(x, w1, bias1, *activations.env, hidden_activations); // Activation (Gelu), store in act. RowPtrF multiplier = RowPtrF(nullptr, 0); Activation(layer_weights->layer_config.activation, hidden_activations.Row(0), multiplier.Row(0), ff_hidden_dim * num_interleaved); // Hidden layer -> output layer. auto activations_mat = MakeConstMat( hidden_activations.Row(0), Extents2D(num_interleaved, ff_hidden_dim)); MatMul(activations_mat, w_output, output_bias, *activations.env, ffw_out); } // `batch_idx` indicates which row of `x` to write to. // `pos` is the *token*'s position, not the start of the batch, because this is // called for batches of tokens in prefill, but batches of queries in decode. template HWY_NOINLINE void EmbedToken(int token, size_t batch_idx, size_t pos, size_t pos_in_prompt, const ModelWeightsPtrs& weights, RowVectorBatch& x, const ImageTokens* image_tokens) { // Image tokens just need to be copied. if (image_tokens != nullptr && pos_in_prompt < image_tokens->BatchSize()) { hwy::CopyBytes(image_tokens->Batch(pos_in_prompt), x.Batch(batch_idx), x.Cols() * sizeof(x.Const()[0])); return; } const size_t model_dim = weights.weights_config.model_dim; const size_t vocab_size = weights.weights_config.vocab_size; const float emb_scaling = EmbeddingScaling(model_dim); HWY_DASSERT(token >= 0); HWY_DASSERT(token < static_cast(vocab_size)); const hn::ScalableTag df; DecompressAndZeroPad( df, MakeSpan(weights.embedder_input_embedding.data(), vocab_size * model_dim), token * model_dim, x.Batch(batch_idx), model_dim); MulByConst(emb_scaling * weights.embedder_input_embedding.scale(), x.Batch(batch_idx), model_dim); if (weights.weights_config.absolute_pe) { AddAbsolutePositionalEmbeddings(x.Batch(batch_idx), model_dim, pos); } } template HWY_NOINLINE void ResidualConnection( size_t num_interleaved, T* HWY_RESTRICT other, T* HWY_RESTRICT x, const LayerWeightsPtrs* layer_weights, bool is_attention) { // ResidualType::Add AddFromBatched(num_interleaved, other, x, layer_weights->layer_config.model_dim); } template void PostNorm(PostNormType post_norm, size_t num_interleaved, const WeightT& weights, InOutT* inout) { if (post_norm == PostNormType::Scale) { RMSNormInplaceBatched(num_interleaved, weights.data_scale1(), inout, weights.NumElements()); } } template HWY_NOINLINE void TransformerLayer(const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, size_t num_tokens, size_t cache_layer_idx, const LayerWeightsPtrs* layer_weights, Activations& activations, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) { const size_t model_dim = activations.weights_config.model_dim; const size_t num_interleaved = num_tokens * queries_pos.size(); auto type = layer_weights->layer_config.type; RMSNormBatched(num_interleaved, activations.x.All(), layer_weights->pre_attention_norm_scale.data_scale1(), activations.pre_att_rms_out.All(), model_dim); Attention(type, queries_pos, queries_prefix_end, num_tokens, cache_layer_idx, activations, layer_weights, div_seq_len, kv_caches); PostNorm(layer_weights->layer_config.post_norm, num_interleaved, layer_weights->post_attention_norm_scale, activations.att_sums.All()); ResidualConnection(num_interleaved, activations.att_sums.All(), activations.x.All(), layer_weights, /*is_attention=*/true); RMSNormBatched(num_interleaved, activations.x.All(), layer_weights->pre_ffw_norm_scale.data_scale1(), activations.bf_pre_ffw_rms_out.All(), model_dim); if (layer_weights->layer_config.type == LayerAttentionType::kVit) { FFWVit(activations, num_interleaved, layer_weights); } else { FFWNoVit(activations, num_interleaved, layer_weights); } PostNorm(layer_weights->layer_config.post_norm, num_interleaved, layer_weights->post_ffw_norm_scale, activations.ffw_out.All()); ResidualConnection(num_interleaved, activations.ffw_out.All(), activations.x.All(), layer_weights, /*is_attention=*/false); } // Vit transformer layer. Some comments below refer to the Vit implementation in // the Big Vision codebase. See // github.com/google-research/big_vision/blob/main/big_vision/models/vit.py // TODO(keysers): consider adding a wrapper for both LayerNorm with RMSNorm and // try merging this with TransformerLayer. template HWY_NOINLINE void VitTransformerLayer(size_t num_tokens, size_t layer, const LayerWeightsPtrs* layer_weights, Activations& activations) { const size_t model_dim = activations.weights_config.model_dim; auto type = layer_weights->layer_config.type; HWY_DASSERT(type == LayerAttentionType::kVit); auto& x = activations.x; HWY_DASSERT(x.BatchSize() == num_tokens); HWY_DASSERT(x.Cols() == model_dim); // y = nn.LayerNorm()(x) // y ~ pre_att_rms_out LayerNormBatched(num_tokens, x.All(), layer_weights->vit.layer_norm_0_scale.data_scale1(), layer_weights->vit.layer_norm_0_bias.data_scale1(), activations.pre_att_rms_out.All(), model_dim); // y = out["sa"] = nn.MultiHeadDotProductAttention(...)(y, y) // y ~ att_sums VitAttention(num_tokens, layer, activations, layer_weights)(); // x = out["+sa"] = x + y AddFromBatched(num_tokens, activations.att_sums.All(), x.All(), model_dim); // y = nn.LayerNorm()(x) // y ~ bf_pre_ffw_rms_out LayerNormBatched(num_tokens, x.All(), layer_weights->vit.layer_norm_1_scale.data_scale1(), layer_weights->vit.layer_norm_1_bias.data_scale1(), activations.bf_pre_ffw_rms_out.All(), model_dim); // y = out["mlp"] = MlpBlock(...)(y) // y ~ ffw_out FFWVit(activations, num_tokens, layer_weights); // x = out["+mlp"] = x + y AddFromBatched(num_tokens, activations.ffw_out.All(), x.All(), model_dim); } // Prefill() and Transformer() increment positions in-place. using QueriesMutablePos = hwy::Span; // Populates KV cache for batches of tokens from one query at a time. template HWY_NOINLINE void Prefill( const QueriesPromptTokens& queries_prompt, const QueriesMutablePos& queries_pos, const QueriesPos& queries_prefix_end, const size_t query_idx_start, const ModelWeightsPtrs& weights, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches) { PROFILER_ZONE("Gen.Prefill"); const size_t num_queries = queries_prompt.size(); HWY_DASSERT(queries_pos.size() == num_queries); HWY_DASSERT(queries_prefix_end.size() == num_queries); HWY_DASSERT(kv_caches.size() == num_queries); // Batches are important for amortizing loading weights over multiple tokens. // This is possible in prefill because we know all tokens beforehand, whereas // decode depends on the previous output token. However, each prefill batch of // a query requires that preceding batches already wrote to the KV cache, // hence we sequentially loop over token batches. We can reduce the number of // iterations by increasing the batch size, but this also increases arithmetic // intensity, and so we are eventually compute-limited. We could devote some // threads to parallelizing over queries, but for simplicity we assign them // all to MatMul. const size_t max_tbatch_size = activations.x.BatchSize(); // For each query. `qi` is within the batch, not the global query index. for (size_t qi = 0; qi < num_queries; ++qi) { // Single query at a time, so pass slices of the spans because // GemmaAttention will only access the first KV cache and position. QueriesPos single_query_pos(&queries_pos[qi], 1); QueriesPos single_query_prefix_end(&queries_prefix_end[qi], 1); KVCaches single_kv_cache(&kv_caches[qi], 1); const size_t prompt_size = queries_prompt[qi].size(); // In autoregressive mode, we don't need to prefill the last token, so - 1. size_t prefill_this_query = prompt_size - 1; const size_t prefix_end_this_query = queries_prefix_end[qi]; // We can't attend beyond the prompt_size. HWY_ASSERT(prefix_end_this_query <= prompt_size); // Special case: if the prefix includes the last token, we need to prefill // the last token, too. However, we need to rewind this for the generation // of the first token. So we need to keep track of this. // TODO: consider implementing masking instead of this logic? const bool attend_to_last_token = (prefill_this_query < prefix_end_this_query); if (attend_to_last_token) { // The difference can be at most 1. prefill_this_query += 1; HWY_ASSERT(prefill_this_query == prefix_end_this_query); } // In prefix-LM mode, we need to look at all the tokens for the prefix in // one iteration through the layers, so we need a large enough batch size. HWY_ASSERT(prefix_end_this_query == 0 || max_tbatch_size >= prefill_this_query); // For each batch of tokens in the query: for (size_t tbatch_start = 0; tbatch_start < prefill_this_query; tbatch_start += max_tbatch_size) { const size_t tbatch_size = HWY_MIN(max_tbatch_size, prefill_this_query - tbatch_start); // Fill activations.x (much faster than TransformerLayer). for (size_t ti = 0; ti < tbatch_size; ++ti) { const size_t pos = queries_pos[qi] + ti; const size_t pos_in_prompt = tbatch_start + ti; const int token = queries_prompt[qi][pos_in_prompt]; EmbedToken(token, ti, pos, pos_in_prompt, weights, activations.x, runtime_config.image_tokens); } // Transformer with one batch of tokens from a single query. for (size_t layer = 0; layer < weights.weights_config.layer_configs.size(); ++layer) { const auto* layer_weights = weights.GetLayer(layer); TransformerLayer(single_query_pos, single_query_prefix_end, tbatch_size, layer, layer_weights, activations, div_seq_len, single_kv_cache); } // NOTE: we unconditionally call StreamToken, even if EOS. for (size_t ti = 0; ti < tbatch_size; ++ti) { const size_t pos = queries_pos[qi] + ti; const size_t pos_in_prompt = tbatch_start + ti; const int token = queries_prompt[qi][pos_in_prompt]; if (pos_in_prompt < prompt_size - 1) { runtime_config.StreamToken(query_idx_start + qi, pos, token, 0.0f); } else { // The last token will be streamed later and we should only get here // if we need to attend to the last token because it is in the prefix. HWY_ASSERT(attend_to_last_token); } } queries_pos[qi] += tbatch_size; } // for tbatch_start if (attend_to_last_token) { // We need to rewind the position for the last token that we only // attended to to make sure the prefix LM sees everything. // This means we duplicate work on the last prompt token in autoregressive // decoding. Alternatives: (1) real masking; (2) always prefill the last // token and only generate the next one from the already prefilled // activations. queries_pos[qi] -= 1; } } } // Gets the patches of the image and embeds them with the image embedding // kernel. The result is stored in activations.x. template HWY_NOINLINE void EmbedImagePatches(const Image& image, const ModelWeightsPtrs& weights, Activations& activations) { const size_t model_dim = weights.weights_config.vit_config.model_dim; const size_t patch_width = weights.weights_config.vit_config.patch_width; const size_t seq_len = weights.weights_config.vit_config.seq_len; const size_t patch_size = patch_width * patch_width * 3; HWY_DASSERT(weights.vit_img_embedding_kernel.NumElements() == patch_size * model_dim); HWY_DASSERT(activations.x.Cols() == model_dim); std::vector> image_patches(seq_len); for (size_t i = 0; i < seq_len; ++i) { image_patches[i] = hwy::AllocateAligned(patch_size); image.GetPatch(i, image_patches[i].get()); } // img/embedding/kernel has original shape (14, 14, 3, 1152) // H x W x C x D transposed to D x (H x W x C) so here (1152, 14 * 14 * 3) // image_patches is (256, 14 * 14 * 3) // This could be done as one MatMul like: // RowVectorBatch image_patches(kSeqLen, kPatchSize); // [Get patches] // MatMul( // MatFromBatch(kVitSeqLen, image_patches), // MatFromWeights(weights.vit_img_embedding_kernel), // weights.vit_img_embedding_bias.data_scale1(), *activations.env, // RowPtrF(activations.x.All(), kVitModelDim)); // However, MatMul currently requires that // A.cols % (2 * hn::Lanes(hn::ScalableTag())) == 0 // which is not the case here. We should relax that requirement on MatMul and // then use the above. For now, we rely on MatVecAdd instead. for (size_t i = 0; i < seq_len; ++i) { MatVecAdd(weights.vit_img_embedding_kernel, 0, model_dim, patch_size, image_patches[i].get(), weights.vit_img_embedding_bias.data_scale1(), activations.x.Batch(i), activations.env->Pool()); } // Add position embeddings. AddFrom(weights.vit_img_pos_embedding.data_scale1(), activations.x.All(), seq_len * model_dim); } // Prefills the image tokens with the ViT encoder. template HWY_NOINLINE void PrefillVit(const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens, Activations& activations) { PROFILER_ZONE("Gen.PrefillVit"); const size_t num_tokens = weights.weights_config.vit_config.seq_len; const size_t vit_model_dim = weights.weights_config.vit_config.model_dim; HWY_ASSERT(num_tokens == activations.x.BatchSize()); // Embed the image patches. EmbedImagePatches(image, weights, activations); // Go through all layers. for (size_t layer = 0; layer < weights.weights_config.vit_config.layer_configs.size(); ++layer) { const auto* layer_weights = weights.GetVitLayer(layer); VitTransformerLayer(num_tokens, layer, layer_weights, activations); } // Final Layernorm. LayerNormBatched(num_tokens, activations.x.All(), weights.vit_encoder_norm_scale.data_scale1(), weights.vit_encoder_norm_bias.data_scale1(), activations.x.All(), vit_model_dim); // Apply head embedding into image_tokens of size of the LLM kModelDim. MatMul(ConstMatFromBatch(num_tokens, activations.x), ConstMatFromWeights(weights.vit_img_head_kernel), weights.vit_img_head_bias.data_scale1(), *activations.env, RowPtrFromBatch(image_tokens)); } // Generates one token for each query. `queries_token` is the previous token // from each query, and `queries_pos` are their position in the sequence. template HWY_NOINLINE void Transformer( const QueriesToken& queries_token, const QueriesMutablePos& queries_pos, const QueriesPos& queries_prefix_end, const ModelWeightsPtrs& weights, Activations& activations, const hwy::Divisor& div_seq_len, const KVCaches& kv_caches, const LayersOutputFunc& layers_output, const ActivationsObserverFunc& activations_observer) { const size_t model_dim = weights.weights_config.model_dim; const size_t num_queries = queries_token.size(); HWY_DASSERT(queries_pos.size() == num_queries); HWY_DASSERT(queries_prefix_end.size() == num_queries); if (layers_output) { for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { const float token_f = queries_token[query_idx]; layers_output(query_idx, queries_pos[query_idx], "tokens", -1, &token_f, 1); } } for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { EmbedToken(queries_token[query_idx], query_idx, queries_pos[query_idx], /*pos_in_prompt=*/0, weights, activations.x, /*image_tokens=*/nullptr); } for (size_t layer = 0; layer < weights.c_layers.size(); ++layer) { const LayerWeightsPtrs* layer_weights = weights.GetLayer(layer); TransformerLayer(queries_pos, queries_prefix_end, /*num_tokens=*/1, layer, layer_weights, activations, div_seq_len, kv_caches); if (activations_observer) { activations_observer(queries_pos, layer, activations); } } RMSNormInplaceBatched(num_queries, weights.final_norm_scale.data_scale1(), activations.x.All(), model_dim); if (activations_observer) { activations_observer(queries_pos, -1, activations); } for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { queries_pos[query_idx] += 1; } } // Placeholder for internal test3, do not remove // Returns the min and max number of tokens for all queries. static size_t MaxQueryLength(const QueriesPromptTokens& queries_prompt) { size_t max_prompt_size = 0; for (size_t i = 0; i < queries_prompt.size(); ++i) { max_prompt_size = std::max(max_prompt_size, queries_prompt[i].size()); } return max_prompt_size; } // Holds "is at end of stream" state for each query. class TokenStreamer { public: explicit TokenStreamer(const RuntimeConfig& runtime_config) : runtime_config_(runtime_config) {} // Returns whether the query was already at, or has just reached, the end of // the stream: either via token == eos_id, or StreamToken returning false. bool operator()(size_t query_idx, size_t pos, int token, float prob) { if (HWY_UNLIKELY(is_eos_.Get(query_idx))) return true; if (!runtime_config_.StreamToken(query_idx, pos, token, prob) || token == runtime_config_.eos_id) { is_eos_.Set(query_idx); return true; } return false; } private: const RuntimeConfig& runtime_config_; hwy::BitSet4096<> is_eos_; }; HWY_INLINE SampleFunc ChooseSampleFunc(const RuntimeConfig& runtime_config) { // If user provided a sample_func, use it. if (runtime_config.sample_func) return runtime_config.sample_func; // Fast path for top-1 with no accept_token. if (runtime_config.top_k == 1 && !runtime_config.accept_token) { return [](float* logits, size_t vocab_size) HWY_ATTR -> TokenAndProb { PROFILER_ZONE("Gen.Sample Top1"); return Top1OfSoftmax(logits, vocab_size); }; } // General case: Softmax with top-k sampling. return [&runtime_config](float* logits, size_t vocab_size) HWY_ATTR -> TokenAndProb { PROFILER_ZONE("Gen.Sample general"); Softmax(logits, vocab_size); const int token = SampleTopK( logits, runtime_config.top_k, vocab_size, *runtime_config.gen, runtime_config.temperature, runtime_config.accept_token); return TokenAndProb{.token = token, .prob = logits[token]}; }; } // Generates one continuation for each query in `queries_prompt`, which is one // qbatch whose size is at most the `batch_size` passed to // `activations.Allocate`. // // `queries_pos` stores the KV cache position for each query. In the first turn // of a chat, pos = 0; we increment each query's position after each token. // // `query_idx_start` is the query_idx of the first query in the batch, so that // `StreamFunc` gets the global query index, not relative to the batch. // // `kv_caches` is for the batch, size must match `queries_prompt`. template void GenerateT(const ModelWeightsStorage& model, Activations& activations, const RuntimeConfig& runtime_config, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos_in, const QueriesPos& queries_prefix_end, const size_t query_idx_start, const KVCaches& kv_caches, TimingInfo& timing_info) { // Griffin assumes that the recurrent block cache is zero-initialized. for (size_t i = 0; i < kv_caches.size(); ++i) { if (queries_pos_in[i] == 0) { kv_caches[i].ZeroGriffinCache(); // No-op for non-Griffin models. } } // Copy so we can increment without requiring users to pass in a mutable span. std::vector queries_pos_copy(queries_pos_in.cbegin(), queries_pos_in.cend()); const QueriesMutablePos queries_mutable_pos(queries_pos_copy.data(), queries_pos_copy.size()); // Sanity check: prompts should not be empty, nor start with EOS. for (size_t query_idx = 0; query_idx < queries_prompt.size(); ++query_idx) { const PromptTokens& prompt = queries_prompt[query_idx]; HWY_ASSERT(prompt.size() != 0 && prompt[0] != runtime_config.eos_id); } const size_t num_queries = queries_prompt.size(); HWY_ASSERT(num_queries <= 4096); // TokenStreamer uses BitSet4096. HWY_ASSERT(num_queries <= activations.x.BatchSize()); HWY_ASSERT(queries_pos_in.size() == num_queries); HWY_ASSERT(kv_caches.size() == num_queries); const hwy::Divisor div_seq_len(static_cast(kv_caches[0].seq_len)); const ModelWeightsPtrs& weights = *model.GetWeightsOfType(); size_t max_prompt_size = MaxQueryLength(queries_prompt); size_t max_generated_tokens = runtime_config.max_generated_tokens; RangeChecks(weights.weights_config, max_generated_tokens, max_prompt_size); const SampleFunc sample_token = ChooseSampleFunc(runtime_config); // Prefill stops before min_prompt_size - 1 because the last prompt // token is the first input token for generation. const double prefill_start = hwy::platform::Now(); // If tbatch is larger than the qbatch we already have in `activations`, then // allocate prefill_activations, otherwise reuse. const bool use_prefill_activations = runtime_config.prefill_tbatch_size > activations.x.BatchSize(); Activations prefill_activations(weights.weights_config); if (use_prefill_activations) { prefill_activations.Allocate(runtime_config.prefill_tbatch_size, activations.env->Pools()); } Prefill(queries_prompt, queries_mutable_pos, queries_prefix_end, query_idx_start, weights, use_prefill_activations ? prefill_activations : activations, runtime_config, div_seq_len, kv_caches); // Compute the number of tokens that were prefilled and notify timing_info. size_t prefilled_tokens = 0; for (size_t qi = 0; qi < num_queries; ++qi) { prefilled_tokens += queries_prompt[qi].size() - 1; } timing_info.NotifyPrefill(prefilled_tokens, prefill_start); // queries_pos are incremented by Prefill. // Storage for the last generated token from each query, passed to the next // Transformer() call. std::vector gen_tokens(num_queries); // Stream the last prompt token from each query and fill gen_tokens. TokenStreamer token_streamer(runtime_config); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { size_t last_token_pos_in_prompt = queries_mutable_pos[query_idx] - queries_pos_in[query_idx]; gen_tokens[query_idx] = queries_prompt[query_idx][last_token_pos_in_prompt]; (void)token_streamer(query_idx_start + query_idx, queries_mutable_pos[query_idx], gen_tokens[query_idx], 0.0f); } const size_t vocab_size = model.Config().vocab_size; const double gen_start = hwy::platform::Now(); for (size_t gen = 0; gen < max_generated_tokens; ++gen) { // Decode generates one token per query and increments queries_mutable_pos. Transformer(QueriesToken(gen_tokens.data(), num_queries), queries_mutable_pos, queries_prefix_end, weights, activations, div_seq_len, kv_caches, runtime_config.layers_output, runtime_config.activations_observer); // queries_pos are incremented by Transformer. bool all_queries_eos = true; { PROFILER_ZONE("Gen.EmbeddingMatmul"); // Compute logits from last layer activations. MatMul(ConstMatFromBatch(num_queries, activations.x), ConstMatFromWeights(weights.embedder_input_embedding), /*add=*/nullptr, *activations.env, RowPtrFromBatch(activations.logits)); } PROFILER_ZONE("Gen.Softcap+Sample+Stream"); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { float* HWY_RESTRICT logits = activations.logits.Batch(query_idx); MaybeLogitsSoftCap(weights.weights_config.final_cap, logits, vocab_size); const TokenAndProb tp = sample_token(logits, vocab_size); timing_info.NotifyGenerated(prefill_start, gen_start); const bool is_eos = token_streamer(query_idx_start + query_idx, queries_mutable_pos[query_idx], tp.token, tp.prob); all_queries_eos &= is_eos; gen_tokens[query_idx] = is_eos ? runtime_config.eos_id : tp.token; } if (all_queries_eos) break; } // foreach token to generate timing_info.NotifyGenerateDone(gen_start); } template void GenerateSingleT(const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const PromptTokens& prompt, size_t pos, size_t prefix_end, KVCache& kv_cache, NestedPools& pools, TimingInfo& timing_info) { constexpr size_t kNumQueries = 1; const size_t qbatch_start = 0; // TODO: move into Gemma? Activations activations(model.Config()); activations.Allocate(kNumQueries, pools); const QueriesPromptTokens queries_prompt(&prompt, kNumQueries); QueriesPos queries_pos(&pos, kNumQueries); const QueriesPos queries_prefix_end(&prefix_end, kNumQueries); const KVCaches kv_caches{&kv_cache, kNumQueries}; GenerateT(model, activations, runtime_config, queries_prompt, queries_pos, queries_prefix_end, qbatch_start, kv_caches, timing_info); } template void GenerateBatchT(const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const KVCaches& kv_caches, NestedPools& pools, TimingInfo& timing_info) { const size_t num_queries = queries_prompt.size(); HWY_ASSERT(queries_pos.size() == num_queries); HWY_ASSERT(kv_caches.size() == num_queries); // Griffin does not support query batching. size_t max_qbatch_size = runtime_config.decode_qbatch_size; for (const auto& layer_config : model.Config().layer_configs) { if (layer_config.type == LayerAttentionType::kGriffinRecurrentBlock) { max_qbatch_size = 1; break; } } Activations activations(model.Config()); activations.Allocate(max_qbatch_size, pools); for (size_t qbatch_start = 0; qbatch_start < num_queries; qbatch_start += max_qbatch_size) { // Generate one batch of tokens from `qbatch_size` queries. const size_t qbatch_size = HWY_MIN(num_queries - qbatch_start, max_qbatch_size); const QueriesPromptTokens qbatch_prompts(&queries_prompt[qbatch_start], qbatch_size); QueriesPos qbatch_pos(&queries_pos[qbatch_start], qbatch_size); const QueriesPos qbatch_prefix_end(&queries_prefix_end[qbatch_start], qbatch_size); const KVCaches qbatch_kv(&kv_caches[qbatch_start], qbatch_size); GenerateT(model, activations, runtime_config, qbatch_prompts, qbatch_pos, qbatch_prefix_end, qbatch_start, qbatch_kv, timing_info); } } template void GenerateImageTokensT(const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens, NestedPools& pools) { if (model.Config().vit_config.layer_configs.empty()) { HWY_ABORT("Model does not support generating image tokens."); } RuntimeConfig prefill_runtime_config = runtime_config; ModelConfig vit_config = GetVitConfig(model.Config()); prefill_runtime_config.prefill_tbatch_size = vit_config.seq_len; Activations prefill_activations(vit_config); prefill_activations.Allocate(vit_config.seq_len, pools); // Weights are for the full PaliGemma model, not just the ViT part. PrefillVit(*model.GetWeightsOfType(), prefill_runtime_config, image, image_tokens, prefill_activations); } } // namespace HWY_NAMESPACE #if HWY_ONCE // These are extern functions defined by instantiations/*.cc, which include this // 'header' after defining GEMMA_CONFIG, which is for function overloading. void GenerateSingle( // NOLINT(misc-definitions-in-headers) GEMMA_TYPE, const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const PromptTokens& prompt, size_t pos, size_t prefix_end, KVCache& kv_cache, NestedPools& pools, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateSingleT) (model, runtime_config, prompt, pos, prefix_end, kv_cache, pools, timing_info); } void GenerateBatch( // NOLINT(misc-definitions-in-headers) GEMMA_TYPE, const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const KVCaches& kv_caches, NestedPools& pools, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateBatchT) (model, runtime_config, queries_prompt, queries_pos, queries_prefix_end, kv_caches, pools, timing_info); } void GenerateImageTokens( // NOLINT(misc-definitions-in-headers) GEMMA_TYPE, const ModelWeightsStorage& model, const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens, NestedPools& pools) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateImageTokensT) (model, runtime_config, image, image_tokens, pools); } #endif // HWY_ONCE } // namespace gcpp HWY_AFTER_NAMESPACE(); #endif // THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_