// Copyright 2025 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "compression/types.h" // GEMMA_DISABLED_TARGETS #include "gemma/flash_structs.h" #include "gemma/kv_cache.h" #include "gemma/query.h" #include "util/basics.h" #include "util/threading_context.h" #include "util/zones.h" #include "hwy/base.h" #ifndef HWY_DISABLED_TARGETS #define HWY_DISABLED_TARGETS GEMMA_DISABLED_TARGETS #endif // HWY_DISABLED_TARGETS #include "gemma/activations.h" #include "gemma/configs.h" // kMaxQKVDim #include "util/threading.h" #include "hwy/profiler.h" // Compiles this file for multiple architectures via "foreach_target.h", to // which we pass the filename via macro 'argument'. // clang-format off #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "gemma/flash_attention.cc" // NOLINT // clang-format on #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" // After highway.h #include "compression/compress-inl.h" #include "gemma/attention.h" #include "ops/matmul-inl.h" #include "ops/ops-inl.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { static constexpr float kNegInf = -std::numeric_limits::max() / 64.0f; // Updates q in place for RMSNorm and positional encoding. void RMSNormAndPositionalEncoding(const size_t num_tokens, const QBatch& qbatch, MatPtrT& q, const MatPtr& query_norm_scale, const size_t layer_idx, const AttentionActivationsPtrs& activations, ThreadingContext& ctx) { const LayerConfig& layer_config = activations.config.layer_configs[layer_idx]; const float query_scale = activations.query_scale; const hwy::Divisor div_qbatch(qbatch.Size()); const auto func = [&](const size_t task, size_t worker) HWY_ATTR { GCPP_ZONE(ctx, worker, Zones::kFlashAttentionRmsNormAndPositionalEncoding); size_t qi = div_qbatch.Remainder(task); size_t batch_idx = div_qbatch.Divide(task); for (size_t h = 0; h < layer_config.heads; ++h) { const size_t tq_idx = qbatch.Size() * batch_idx + qi; // Find the token position in the query and calculate // the range of cache positions to attend to. constexpr size_t offset = 0; // placeholder, do not remove const size_t pos = qbatch.Pos(qi) + batch_idx + offset; float* HWY_RESTRICT q_row = q.Row(tq_idx) + h * layer_config.qkv_dim; // Apply rope and scaling to Q. if (query_norm_scale.HasPtr()) { CallUpcasted(&query_norm_scale, [&](const auto* weights_t) { RMSNormInplace(weights_t->PackedScale1(), /*w_ofs=*/0, q_row, layer_config.qkv_dim, ctx, worker); }); } PositionalEncodingQK(q_row, layer_idx, activations, ctx, worker, pos, query_scale); } }; { // kHierarchical is not worth the extra sync overhead because the tasks are // very lightweight. ParallelFor(Parallelism::kFlat, num_tokens * qbatch.Size(), ctx, /*cluster_idx=*/0, Callers::kFlashRMSNormAndPositionalEncoding, func); } } // Zeroes out kVTileSize of the given vectors. template > HWY_INLINE void ZeroResults(DF df, VF& sum0, VF& HWY_MAYBE_UNUSED sum1, VF& HWY_MAYBE_UNUSED sum2, VF& HWY_MAYBE_UNUSED sum3, VF& HWY_MAYBE_UNUSED sum4, VF& HWY_MAYBE_UNUSED sum5, VF& HWY_MAYBE_UNUSED sum6, VF& HWY_MAYBE_UNUSED sum7) { sum0 = hn::Zero(df); if constexpr (kVTileSize >= 4) { sum1 = hn::Zero(df); sum2 = hn::Zero(df); sum3 = hn::Zero(df); } if constexpr (kVTileSize >= 8) { sum4 = hn::Zero(df); sum5 = hn::Zero(df); sum6 = hn::Zero(df); sum7 = hn::Zero(df); } } // Returns a tile of 1, 4 or 8 Q rows by 2NF K Q.K dot products, in float32. // K is always pre-transposed to shape: // [seq_len / 2kNF, layers * kv_heads * qkv_dim/2 * 2kNF * 2], where the /2, *2 // represents that pairs of qkv_dim elements are kept together to make best use // of BF16 dot product instructions. // Note that this version assumes that Q is float32, and not transposed, and // HWY_NATIVE_DOT_BF16 is false. template > HWY_INLINE void QDotKTile148FloatNotNative( DF df, const float* HWY_RESTRICT q, const uint32_t* HWY_RESTRICT q_offsets, size_t half_cols, const MatPtrT& k, size_t pos, VF& sum00, VF& sum01, VF& HWY_MAYBE_UNUSED sum10, VF& HWY_MAYBE_UNUSED sum11, VF& HWY_MAYBE_UNUSED sum20, VF& HWY_MAYBE_UNUSED sum21, VF& HWY_MAYBE_UNUSED sum30, VF& HWY_MAYBE_UNUSED sum31, VF& HWY_MAYBE_UNUSED sum40, VF& HWY_MAYBE_UNUSED sum41, VF& HWY_MAYBE_UNUSED sum50, VF& HWY_MAYBE_UNUSED sum51, VF& HWY_MAYBE_UNUSED sum60, VF& HWY_MAYBE_UNUSED sum61, VF& HWY_MAYBE_UNUSED sum70, VF& HWY_MAYBE_UNUSED sum71) { ZeroResults(df, sum00, sum10, sum20, sum30, sum40, sum50, sum60, sum70); ZeroResults(df, sum01, sum11, sum21, sum31, sum41, sum51, sum61, sum71); using DBF = hn::ScalableTag; const DBF dbf; using VBF = hn::Vec; const size_t kNF = hn::Lanes(df); const float* HWY_RESTRICT q_base[kVTileSize]; for (size_t i = 0; i < kVTileSize; ++i) { q_base[i] = q + q_offsets[i]; } const BF16* HWY_RESTRICT k_base = k.Row(pos / (2 * kNF)); for (size_t i = 0; i < half_cols; ++i, k_base += kNF * 4) { // TODO(rays): Replace with decompress2. VBF k0_vec = hn::LoadU(dbf, k_base); VBF k1_vec = hn::LoadU(dbf, k_base + kNF * 2); VF k0_even = hn::PromoteEvenTo(df, k0_vec); VF k0_odd = hn::PromoteOddTo(df, k0_vec); VF k1_even = hn::PromoteEvenTo(df, k1_vec); VF k1_odd = hn::PromoteOddTo(df, k1_vec); VF q0_even = hn::Set(df, q_base[0][i * 2]); VF q0_odd = hn::Set(df, q_base[0][i * 2 + 1]); sum00 = hn::MulAdd(q0_even, k0_even, sum00); sum01 = hn::MulAdd(q0_even, k1_even, sum01); sum00 = hn::MulAdd(q0_odd, k0_odd, sum00); sum01 = hn::MulAdd(q0_odd, k1_odd, sum01); if constexpr (kVTileSize >= 4) { VF q1_even = hn::Set(df, q_base[1][i * 2]); VF q1_odd = hn::Set(df, q_base[1][i * 2 + 1]); sum10 = hn::MulAdd(q1_even, k0_even, sum10); sum11 = hn::MulAdd(q1_even, k1_even, sum11); sum10 = hn::MulAdd(q1_odd, k0_odd, sum10); sum11 = hn::MulAdd(q1_odd, k1_odd, sum11); VF q2_even = hn::Set(df, q_base[2][i * 2]); VF q2_odd = hn::Set(df, q_base[2][i * 2 + 1]); sum20 = hn::MulAdd(q2_even, k0_even, sum20); sum21 = hn::MulAdd(q2_even, k1_even, sum21); sum20 = hn::MulAdd(q2_odd, k0_odd, sum20); sum21 = hn::MulAdd(q2_odd, k1_odd, sum21); VF q3_even = hn::Set(df, q_base[3][i * 2]); VF q3_odd = hn::Set(df, q_base[3][i * 2 + 1]); sum30 = hn::MulAdd(q3_even, k0_even, sum30); sum31 = hn::MulAdd(q3_even, k1_even, sum31); sum30 = hn::MulAdd(q3_odd, k0_odd, sum30); sum31 = hn::MulAdd(q3_odd, k1_odd, sum31); } if constexpr (kVTileSize >= 8) { VF q4_even = hn::Set(df, q_base[4][i * 2]); VF q4_odd = hn::Set(df, q_base[4][i * 2 + 1]); sum40 = hn::MulAdd(q4_even, k0_even, sum40); sum41 = hn::MulAdd(q4_even, k1_even, sum41); sum40 = hn::MulAdd(q4_odd, k0_odd, sum40); sum41 = hn::MulAdd(q4_odd, k1_odd, sum41); VF q5_even = hn::Set(df, q_base[5][i * 2]); VF q5_odd = hn::Set(df, q_base[5][i * 2 + 1]); sum50 = hn::MulAdd(q5_even, k0_even, sum50); sum51 = hn::MulAdd(q5_even, k1_even, sum51); sum50 = hn::MulAdd(q5_odd, k0_odd, sum50); sum51 = hn::MulAdd(q5_odd, k1_odd, sum51); VF q6_even = hn::Set(df, q_base[6][i * 2]); VF q6_odd = hn::Set(df, q_base[6][i * 2 + 1]); sum60 = hn::MulAdd(q6_even, k0_even, sum60); sum61 = hn::MulAdd(q6_even, k1_even, sum61); sum60 = hn::MulAdd(q6_odd, k0_odd, sum60); sum61 = hn::MulAdd(q6_odd, k1_odd, sum61); VF q7_even = hn::Set(df, q_base[7][i * 2]); VF q7_odd = hn::Set(df, q_base[7][i * 2 + 1]); sum70 = hn::MulAdd(q7_even, k0_even, sum70); sum71 = hn::MulAdd(q7_even, k1_even, sum71); sum70 = hn::MulAdd(q7_odd, k0_odd, sum70); sum71 = hn::MulAdd(q7_odd, k1_odd, sum71); } } } // Loads an adjacent pair of floats, converts them to BF16, and broadcasts them // across a vector of BF16 as alternating odd and even elements. // hn::ReorderDemote2To(dbf, q_1_float, q_1_float); with q1_float containing // alternating odd and even floats appears not to do this. HWY_INLINE hn::Vec> DemoteAndBroadcast2ToBF16( const float* HWY_RESTRICT base) { using DF = hn::ScalableTag; const DF df; using VF = hn::Vec; VF v_even = hn::Set(df, base[0]); VF v_odd = hn::Set(df, base[1]); VF interleaved = hn::OddEven(v_odd, v_even); return hn::OrderedDemote2To(hn::ScalableTag(), interleaved, interleaved); } // Returns a tile of 1, 4 or 8 Q rows by 2NF K Q.K dot products, in float32. // K is always pre-transposed to shape: // [seq_len / 2kNF, layers * kv_heads * qkv_dim/2 * 2kNF * 2], where the /2, *2 // represents that pairs of qkv_dim elements are kept together to make best use // of BF16 dot product instructions. // Note that this version assumes that Q is float32, and not transposed, and // HWY_NATIVE_DOT_BF16 is true. template > HWY_INLINE void QDotKTile148FloatNative( DF df, const float* HWY_RESTRICT q, const uint32_t* HWY_RESTRICT q_offsets, size_t half_cols, const MatPtrT& k, size_t pos, VF& sum00, VF& sum01, VF& HWY_MAYBE_UNUSED sum10, VF& HWY_MAYBE_UNUSED sum11, VF& HWY_MAYBE_UNUSED sum20, VF& HWY_MAYBE_UNUSED sum21, VF& HWY_MAYBE_UNUSED sum30, VF& HWY_MAYBE_UNUSED sum31, VF& HWY_MAYBE_UNUSED sum40, VF& HWY_MAYBE_UNUSED sum41, VF& HWY_MAYBE_UNUSED sum50, VF& HWY_MAYBE_UNUSED sum51, VF& HWY_MAYBE_UNUSED sum60, VF& HWY_MAYBE_UNUSED sum61, VF& HWY_MAYBE_UNUSED sum70, VF& HWY_MAYBE_UNUSED sum71) { ZeroResults(df, sum00, sum10, sum20, sum30, sum40, sum50, sum60, sum70); ZeroResults(df, sum01, sum11, sum21, sum31, sum41, sum51, sum61, sum71); VF unused = hn::Zero(df); using DBF = hn::ScalableTag; const DBF dbf; using VBF = hn::Vec; const size_t kNF = hn::Lanes(df); const float* HWY_RESTRICT q_base[kVTileSize]; for (size_t i = 0; i < kVTileSize; ++i) { q_base[i] = q + q_offsets[i]; } const BF16* HWY_RESTRICT k_base = k.Row(pos / (2 * kNF)); for (size_t i = 0; i < half_cols; ++i, k_base += kNF * 4) { VBF kvec0 = hn::LoadU(dbf, k_base); VBF kvec1 = hn::LoadU(dbf, k_base + kNF * 2); VBF q0_bf16 = DemoteAndBroadcast2ToBF16(q_base[0] + i * 2); sum00 = hn::ReorderWidenMulAccumulate(df, q0_bf16, kvec0, sum00, unused); sum01 = hn::ReorderWidenMulAccumulate(df, q0_bf16, kvec1, sum01, unused); if constexpr (kVTileSize >= 4) { VBF q1_bf16 = DemoteAndBroadcast2ToBF16(q_base[1] + i * 2); sum10 = hn::ReorderWidenMulAccumulate(df, q1_bf16, kvec0, sum10, unused); sum11 = hn::ReorderWidenMulAccumulate(df, q1_bf16, kvec1, sum11, unused); VBF q2_bf16 = DemoteAndBroadcast2ToBF16(q_base[2] + i * 2); sum20 = hn::ReorderWidenMulAccumulate(df, q2_bf16, kvec0, sum20, unused); sum21 = hn::ReorderWidenMulAccumulate(df, q2_bf16, kvec1, sum21, unused); VBF q3_bf16 = DemoteAndBroadcast2ToBF16(q_base[3] + i * 2); sum30 = hn::ReorderWidenMulAccumulate(df, q3_bf16, kvec0, sum30, unused); sum31 = hn::ReorderWidenMulAccumulate(df, q3_bf16, kvec1, sum31, unused); } if constexpr (kVTileSize >= 8) { VBF q4_bf16 = DemoteAndBroadcast2ToBF16(q_base[4] + i * 2); sum40 = hn::ReorderWidenMulAccumulate(df, q4_bf16, kvec0, sum40, unused); sum41 = hn::ReorderWidenMulAccumulate(df, q4_bf16, kvec1, sum41, unused); VBF q5_bf16 = DemoteAndBroadcast2ToBF16(q_base[5] + i * 2); sum50 = hn::ReorderWidenMulAccumulate(df, q5_bf16, kvec0, sum50, unused); sum51 = hn::ReorderWidenMulAccumulate(df, q5_bf16, kvec1, sum51, unused); VBF q6_bf16 = DemoteAndBroadcast2ToBF16(q_base[6] + i * 2); sum60 = hn::ReorderWidenMulAccumulate(df, q6_bf16, kvec0, sum60, unused); sum61 = hn::ReorderWidenMulAccumulate(df, q6_bf16, kvec1, sum61, unused); VBF q7_bf16 = DemoteAndBroadcast2ToBF16(q_base[7] + i * 2); sum70 = hn::ReorderWidenMulAccumulate(df, q7_bf16, kvec0, sum70, unused); sum71 = hn::ReorderWidenMulAccumulate(df, q7_bf16, kvec1, sum71, unused); } } } // Returns a tile of 1, 4 or 8 Q rows by 2NF K Q.K dot products, in float32. // K is always pre-transposed to shape: // [seq_len / 2kNF, layers * kv_heads * qkv_dim/2 * 2kNF * 2], where the /2, *2 // represents that pairs of qkv_dim elements are kept together to make best use // of BF16 dot product instructions. // Note that this is optimized for the case where q and k are bf16, but there is // no native_bf16 instruction. template > HWY_INLINE void QDotKTile148BF16NotNative( DF df, const BF16* HWY_RESTRICT q, const uint32_t* HWY_RESTRICT q_offsets, size_t half_cols, const MatPtrT& k, size_t pos, VF& sum00, VF& sum01, VF& HWY_MAYBE_UNUSED sum10, VF& HWY_MAYBE_UNUSED sum11, VF& HWY_MAYBE_UNUSED sum20, VF& HWY_MAYBE_UNUSED sum21, VF& HWY_MAYBE_UNUSED sum30, VF& HWY_MAYBE_UNUSED sum31, VF& HWY_MAYBE_UNUSED sum40, VF& HWY_MAYBE_UNUSED sum41, VF& HWY_MAYBE_UNUSED sum50, VF& HWY_MAYBE_UNUSED sum51, VF& HWY_MAYBE_UNUSED sum60, VF& HWY_MAYBE_UNUSED sum61, VF& HWY_MAYBE_UNUSED sum70, VF& HWY_MAYBE_UNUSED sum71) { ZeroResults(df, sum00, sum10, sum20, sum30, sum40, sum50, sum60, sum70); ZeroResults(df, sum01, sum11, sum21, sum31, sum41, sum51, sum61, sum71); using DBF = hn::ScalableTag; const DBF dbf; using VBF = hn::Vec; const size_t kNF = hn::Lanes(df); const float* HWY_RESTRICT q_base[kVTileSize]; for (size_t i = 0; i < kVTileSize; ++i) { q_base[i] = reinterpret_cast(q + q_offsets[i]); } const BF16* HWY_RESTRICT k_base = k.Row(pos / (2 * kNF)); for (size_t i = 0; i < half_cols; ++i, k_base += kNF * 4) { VBF kvec0 = hn::LoadU(dbf, k_base); VBF kvec1 = hn::LoadU(dbf, k_base + kNF * 2); VBF q0 = hn::BitCast(dbf, hn::Set(df, q_base[0][i])); VF k0_even = hn::PromoteEvenTo(df, kvec0); VF k0_odd = hn::PromoteOddTo(df, kvec0); VF k1_even = hn::PromoteEvenTo(df, kvec1); VF k1_odd = hn::PromoteOddTo(df, kvec1); VF q0_even = hn::PromoteEvenTo(df, q0); sum00 = hn::MulAdd(q0_even, k0_even, sum00); sum01 = hn::MulAdd(q0_even, k1_even, sum01); VF q0_odd = hn::PromoteOddTo(df, q0); sum00 = hn::MulAdd(q0_odd, k0_odd, sum00); sum01 = hn::MulAdd(q0_odd, k1_odd, sum01); if constexpr (kVTileSize >= 4) { VBF q1 = hn::BitCast(dbf, hn::Set(df, q_base[1][i])); VF q1_even = hn::PromoteEvenTo(df, q1); sum10 = hn::MulAdd(q1_even, k0_even, sum10); sum11 = hn::MulAdd(q1_even, k1_even, sum11); VF q1_odd = hn::PromoteOddTo(df, q1); sum10 = hn::MulAdd(q1_odd, k0_odd, sum10); sum11 = hn::MulAdd(q1_odd, k1_odd, sum11); VBF q2 = hn::BitCast(dbf, hn::Set(df, q_base[2][i])); VF q2_even = hn::PromoteEvenTo(df, q2); sum20 = hn::MulAdd(q2_even, k0_even, sum20); sum21 = hn::MulAdd(q2_even, k1_even, sum21); VF q2_odd = hn::PromoteOddTo(df, q2); sum20 = hn::MulAdd(q2_odd, k0_odd, sum20); sum21 = hn::MulAdd(q2_odd, k1_odd, sum21); VBF q3 = hn::BitCast(dbf, hn::Set(df, q_base[3][i])); VF q3_even = hn::PromoteEvenTo(df, q3); sum30 = hn::MulAdd(q3_even, k0_even, sum30); sum31 = hn::MulAdd(q3_even, k1_even, sum31); VF q3_odd = hn::PromoteOddTo(df, q3); sum30 = hn::MulAdd(q3_odd, k0_odd, sum30); sum31 = hn::MulAdd(q3_odd, k1_odd, sum31); } if constexpr (kVTileSize >= 8) { VBF q4 = hn::BitCast(dbf, hn::Set(df, q_base[4][i])); VF q4_even = hn::PromoteEvenTo(df, q4); sum40 = hn::MulAdd(q4_even, k0_even, sum40); sum41 = hn::MulAdd(q4_even, k1_even, sum41); VF q4_odd = hn::PromoteOddTo(df, q4); sum40 = hn::MulAdd(q4_odd, k0_odd, sum40); sum41 = hn::MulAdd(q4_odd, k1_odd, sum41); VBF q5 = hn::BitCast(dbf, hn::Set(df, q_base[5][i])); VF q5_even = hn::PromoteEvenTo(df, q5); sum50 = hn::MulAdd(q5_even, k0_even, sum50); sum51 = hn::MulAdd(q5_even, k1_even, sum51); VF q5_odd = hn::PromoteOddTo(df, q5); sum50 = hn::MulAdd(q5_odd, k0_odd, sum50); sum51 = hn::MulAdd(q5_odd, k1_odd, sum51); VBF q6 = hn::BitCast(dbf, hn::Set(df, q_base[6][i])); VF q6_even = hn::PromoteEvenTo(df, q6); sum60 = hn::MulAdd(q6_even, k0_even, sum60); sum61 = hn::MulAdd(q6_even, k1_even, sum61); VF q6_odd = hn::PromoteOddTo(df, q6); sum60 = hn::MulAdd(q6_odd, k0_odd, sum60); sum61 = hn::MulAdd(q6_odd, k1_odd, sum61); VBF q7 = hn::BitCast(dbf, hn::Set(df, q_base[7][i])); VF q7_even = hn::PromoteEvenTo(df, q7); sum70 = hn::MulAdd(q7_even, k0_even, sum70); sum71 = hn::MulAdd(q7_even, k1_even, sum71); VF q7_odd = hn::PromoteOddTo(df, q7); sum70 = hn::MulAdd(q7_odd, k0_odd, sum70); sum71 = hn::MulAdd(q7_odd, k1_odd, sum71); } } } // Returns a tile of 1, 4 or 8 Q rows by 2NF K Q.K dot products, in float32. // K is always pre-transposed to shape: // [seq_len / 2kNF, layers * kv_heads * qkv_dim/2 * 2kNF * 2], where the /2, *2 // represents that pairs of qkv_dim elements are kept together to make best use // of BF16 dot product instructions. // Note that this is optimized for the case where q and k are bf16, and there is // a native_bf16 instruction. template > HWY_INLINE void QDotKTile148BF16Native( DF df, const BF16* HWY_RESTRICT q, const uint32_t* HWY_RESTRICT q_offsets, size_t half_cols, const MatPtrT& k, size_t pos, VF& sum00, VF& sum01, VF& HWY_MAYBE_UNUSED sum10, VF& HWY_MAYBE_UNUSED sum11, VF& HWY_MAYBE_UNUSED sum20, VF& HWY_MAYBE_UNUSED sum21, VF& HWY_MAYBE_UNUSED sum30, VF& HWY_MAYBE_UNUSED sum31, VF& HWY_MAYBE_UNUSED sum40, VF& HWY_MAYBE_UNUSED sum41, VF& HWY_MAYBE_UNUSED sum50, VF& HWY_MAYBE_UNUSED sum51, VF& HWY_MAYBE_UNUSED sum60, VF& HWY_MAYBE_UNUSED sum61, VF& HWY_MAYBE_UNUSED sum70, VF& HWY_MAYBE_UNUSED sum71) { ZeroResults(df, sum00, sum10, sum20, sum30, sum40, sum50, sum60, sum70); ZeroResults(df, sum01, sum11, sum21, sum31, sum41, sum51, sum61, sum71); VF unused_sum1 = hn::Zero(df); using DBF = hn::ScalableTag; const DBF dbf; using VBF = hn::Vec; const size_t kNF = hn::Lanes(df); const float* HWY_RESTRICT q_base[kVTileSize]; for (size_t i = 0; i < kVTileSize; ++i) { q_base[i] = reinterpret_cast(q + q_offsets[i]); } const BF16* HWY_RESTRICT k_base = k.Row(pos / (2 * kNF)); for (size_t i = 0; i < half_cols; ++i, k_base += kNF * 4) { VBF k0_vec = hn::LoadU(dbf, k_base); VBF k1_vec = hn::LoadU(dbf, k_base + kNF * 2); VBF q0 = hn::BitCast(dbf, hn::Set(df, q_base[0][i])); sum00 = hn::ReorderWidenMulAccumulate(df, q0, k0_vec, sum00, unused_sum1); sum01 = hn::ReorderWidenMulAccumulate(df, q0, k1_vec, sum01, unused_sum1); if constexpr (kVTileSize >= 4) { VBF q1 = hn::BitCast(dbf, hn::Set(df, q_base[1][i])); sum10 = hn::ReorderWidenMulAccumulate(df, q1, k0_vec, sum10, unused_sum1); sum11 = hn::ReorderWidenMulAccumulate(df, q1, k1_vec, sum11, unused_sum1); VBF q2 = hn::BitCast(dbf, hn::Set(df, q_base[2][i])); sum20 = hn::ReorderWidenMulAccumulate(df, q2, k0_vec, sum20, unused_sum1); sum21 = hn::ReorderWidenMulAccumulate(df, q2, k1_vec, sum21, unused_sum1); VBF q3 = hn::BitCast(dbf, hn::Set(df, q_base[3][i])); sum30 = hn::ReorderWidenMulAccumulate(df, q3, k0_vec, sum30, unused_sum1); sum31 = hn::ReorderWidenMulAccumulate(df, q3, k1_vec, sum31, unused_sum1); } if constexpr (kVTileSize >= 8) { VBF q4 = hn::BitCast(dbf, hn::Set(df, q_base[4][i])); sum40 = hn::ReorderWidenMulAccumulate(df, q4, k0_vec, sum40, unused_sum1); sum41 = hn::ReorderWidenMulAccumulate(df, q4, k1_vec, sum41, unused_sum1); VBF q5 = hn::BitCast(dbf, hn::Set(df, q_base[5][i])); sum50 = hn::ReorderWidenMulAccumulate(df, q5, k0_vec, sum50, unused_sum1); sum51 = hn::ReorderWidenMulAccumulate(df, q5, k1_vec, sum51, unused_sum1); VBF q6 = hn::BitCast(dbf, hn::Set(df, q_base[6][i])); sum60 = hn::ReorderWidenMulAccumulate(df, q6, k0_vec, sum60, unused_sum1); sum61 = hn::ReorderWidenMulAccumulate(df, q6, k1_vec, sum61, unused_sum1); VBF q7 = hn::BitCast(dbf, hn::Set(df, q_base[7][i])); sum70 = hn::ReorderWidenMulAccumulate(df, q7, k0_vec, sum70, unused_sum1); sum71 = hn::ReorderWidenMulAccumulate(df, q7, k1_vec, sum71, unused_sum1); } } } // Handles NF v rows of flash attention for NF q.k dot products from one q row. // Automatically handles masking for causal attention and different start_pos // and last_pos values. template > HWY_INLINE float SingleFlashAttentionRowVector(DF df, size_t start_pos, size_t pos, size_t last_pos, VF& x, float& old_max, float& old_d) { if (pos < start_pos) { size_t mask_size = start_pos - pos; const VF neg_inf = hn::Neg(hn::Inf(df)); x = hn::IfThenElse(hn::FirstN(df, mask_size), neg_inf, x); } if (pos + hn::Lanes(df) > last_pos) { size_t mask_size = pos <= last_pos ? last_pos + 1 - pos : 0; const VF neg_inf = hn::Neg(hn::Inf(df)); x = hn::IfThenElse(hn::FirstN(df, mask_size), x, neg_inf); } float m = hn::ReduceMax(df, x); m = std::max(m, old_max); x = hn::Exp(df, hn::Sub(x, hn::Set(df, m))); float scale = old_d * std::exp(old_max - m); old_d = hn::ReduceSum(df, x) + scale; old_max = m; if (old_d > 0.0f) { const float one_over_d = 1.0f / old_d; scale *= one_over_d; x = hn::Mul(x, hn::Set(df, one_over_d)); } else { scale = 0.0f; x = hn::Zero(df); } return scale; } // Handles 2NF v rows of flash attention for 2NF q.k dot products from 1 q row. // Automatically handles masking for causal attention and different start_pos // and last_pos values. template > HWY_INLINE float DoubleFlashAttentionRowVector(DF df, size_t start_pos, size_t pos, size_t last_pos, VF& x0, VF& x1, float& old_max, float& old_d) { const size_t kNF = hn::Lanes(df); const VF neg_inf = hn::Neg(hn::Inf(df)); if (pos < start_pos) { if (pos + kNF <= start_pos) { x0 = neg_inf; size_t mask_size = start_pos - (pos + kNF); x1 = hn::IfThenElse(hn::FirstN(df, mask_size), neg_inf, x1); } else { size_t mask_size = start_pos - pos; x0 = hn::IfThenElse(hn::FirstN(df, mask_size), neg_inf, x0); } } if (pos + 2 * kNF > last_pos) { if (pos + kNF > last_pos) { size_t mask_size = pos <= last_pos ? last_pos + 1 - pos : 0; x0 = hn::IfThenElse(hn::FirstN(df, mask_size), x0, neg_inf); x1 = neg_inf; } else { size_t mask_size = last_pos + 1 - (pos + kNF); x1 = hn::IfThenElse(hn::FirstN(df, mask_size), x1, neg_inf); } } VF x_max = hn::Max(x0, x1); float m = hn::ReduceMax(df, x_max); m = std::max(m, old_max); VF m_vec = hn::Set(df, m); x0 = hn::Exp(df, hn::Sub(x0, m_vec)); x1 = hn::Exp(df, hn::Sub(x1, m_vec)); float scale = old_d * std::exp(old_max - m); VF x_sum = hn::Add(x0, x1); old_d = hn::ReduceSum(df, x_sum) + scale; old_max = m; if (old_d > 0.0f) { const float one_over_d = 1.0f / old_d; scale *= one_over_d; VF one_over_d_vec = hn::Set(df, one_over_d); x0 = hn::Mul(x0, one_over_d_vec); x1 = hn::Mul(x1, one_over_d_vec); } else { scale = 0.0f; x0 = hn::Zero(df); x1 = hn::Zero(df); } return scale; } // Reduces each of x and stores in following lanes of max (tested with float32) template , class DF4 = hn::CappedTag, class VF4 = hn::Vec, class VF = hn::Vec, typename F> static HWY_INLINE VF4 Reduce4(DF df, VF x_0, VF x_1, VF x_2, VF x_3, F reducer) { const DF4 df4; constexpr size_t kMaxLanes = hn::MaxLanes(df); HWY_LANES_CONSTEXPR size_t kLanes = hn::Lanes(df); HWY_ALIGN T x_transposed[4 * kMaxLanes]; hn::StoreInterleaved4(x_0, x_1, x_2, x_3, df, x_transposed); VF x01 = reducer(hn::Load(df, x_transposed), hn::Load(df, x_transposed + kLanes)); VF x23 = reducer(hn::Load(df, x_transposed + 2 * kLanes), hn::Load(df, x_transposed + 3 * kLanes)); VF x0123 = reducer(x01, x23); hn::Store(x0123, df, x_transposed); VF4 result = hn::Load(df4, x_transposed); for (int i = 1; i < kLanes / 4; ++i) { result = reducer(result, hn::Load(df4, x_transposed + i * 4)); } return result; } // Handles Up to 4 Q rows by NF*2 timesteps of flash attention. template > static HWY_INLINE void FlashAttentionTileStepAndApplySoftCap( DF df, float att_cap, float one_over_att_cap, VF& x_0_p0, VF& x_0_p1, VF& x_1_p0, VF& x_1_p1, VF& x_2_p0, VF& x_2_p1, VF& x_3_p0, VF& x_3_p1, float* HWY_RESTRICT old_max, float* HWY_RESTRICT old_d, float* HWY_RESTRICT scales) { using DF4 = hn::CappedTag; const DF4 df4; using VF4 = hn::Vec; static_assert(kNumQueries >= 1 && kNumQueries <= 4); VF4 new_max = hn::Set(df4, kNegInf); VF max_0, max_1, max_2, max_3 = hn::Zero(df); max_0 = hn::Max(x_0_p0, x_0_p1); if constexpr (kNumQueries >= 2) { max_1 = hn::Max(x_1_p0, x_1_p1); } if constexpr (kNumQueries >= 3) { max_2 = hn::Max(x_2_p0, x_2_p1); } if constexpr (kNumQueries >= 4) { max_3 = hn::Max(x_3_p0, x_3_p1); } if constexpr (kNumQueries == 1) { new_max = hn::InsertLane(new_max, 0, hn::ReduceMax(df, max_0)); } else { new_max = Reduce4(df, max_0, max_1, max_2, max_3, [](auto a, auto b) HWY_ATTR { return hn::Max(a, b); }); } if (att_cap > 0.0f) { VF4 cap = hn::Set(df4, att_cap); VF4 one_over_cap = hn::Set(df4, one_over_att_cap); new_max = hn::Mul(cap, hn::Tanh(df4, hn::Mul(new_max, one_over_cap))); } VF4 old_max_vf = hn::Set(df4, kNegInf); old_max_vf = hn::LoadU(df4, old_max); new_max = hn::Max(new_max, old_max_vf); auto changed_max = hn::Gt(new_max, hn::Set(df4, kNegInf)); // TODO figure out what was wrong with broadcasts and change to that. hn::StoreU(new_max, df4, old_max); if constexpr (kNumQueries >= 1) { const VF new_max_0 = hn::Set(df, old_max[0]); x_0_p0 = hn::Exp(df, hn::Sub(x_0_p0, new_max_0)); x_0_p1 = hn::Exp(df, hn::Sub(x_0_p1, new_max_0)); } if constexpr (kNumQueries >= 2) { const VF new_max_0 = hn::Set(df, old_max[1]); x_1_p0 = hn::Exp(df, hn::Sub(x_1_p0, new_max_0)); x_1_p1 = hn::Exp(df, hn::Sub(x_1_p1, new_max_0)); } if constexpr (kNumQueries >= 3) { const VF new_max_0 = hn::Set(df, old_max[2]); x_2_p0 = hn::Exp(df, hn::Sub(x_2_p0, new_max_0)); x_2_p1 = hn::Exp(df, hn::Sub(x_2_p1, new_max_0)); } if constexpr (kNumQueries >= 4) { const VF new_max_0 = hn::Set(df, old_max[3]); x_3_p0 = hn::Exp(df, hn::Sub(x_3_p0, new_max_0)); x_3_p1 = hn::Exp(df, hn::Sub(x_3_p1, new_max_0)); } VF4 old_d_vf = hn::Set(df4, 0.0f); old_d_vf = hn::LoadU(df4, old_d); VF4 scale = hn::Mul(old_d_vf, hn::Exp(df4, hn::Sub(old_max_vf, new_max))); VF4 x_sum = hn::Zero(df4); if constexpr (kNumQueries == 1) { x_sum = hn::Set(df4, hn::ReduceSum(df, x_0_p0) + hn::ReduceSum(df, x_0_p1)); } else { VF x_0_sum = hn::Add(x_0_p0, x_0_p1); VF x_1_sum = hn::Add(x_1_p0, x_1_p1); VF x_2_sum = hn::Add(x_2_p0, x_2_p1); VF x_3_sum = hn::Add(x_3_p0, x_3_p1); x_sum = Reduce4(df, x_0_sum, x_1_sum, x_2_sum, x_3_sum, [](auto a, auto b) HWY_ATTR { return hn::Add(a, b); }); } old_d_vf = hn::Add(scale, x_sum); auto non_zero_mask = hn::Gt(old_d_vf, hn::Set(df4, 0.0f)); const VF zero = hn::Zero(df); const VF4 zero4 = hn::Zero(df4); const VF4 one_over_d = hn::MaskedDivOr(zero4, non_zero_mask, hn::Set(df4, 1.0f), old_d_vf); HWY_ALIGN float tmp_one_over_d[4]; hn::Store(one_over_d, df4, tmp_one_over_d); hn::BlendedStore(old_d_vf, changed_max, df4, old_d); scale = hn::Mul(scale, one_over_d); hn::BlendedStore(scale, changed_max, df4, scales); if (hn::ExtractLane(old_d_vf, 0) > 0.0f && scales[0] != 1.0f) { const VF one_over_d_0 = hn::Set(df, tmp_one_over_d[0]); x_0_p0 = hn::Mul(x_0_p0, one_over_d_0); x_0_p1 = hn::Mul(x_0_p1, one_over_d_0); } else { x_0_p0 = zero; x_0_p1 = zero; } if constexpr (kNumQueries >= 2) { if (hn::ExtractLane(old_d_vf, 1) > 0.0f && scales[1] != 1.0f) { const VF one_over_d_1 = hn::Set(df, tmp_one_over_d[1]); x_1_p0 = hn::Mul(x_1_p0, one_over_d_1); x_1_p1 = hn::Mul(x_1_p1, one_over_d_1); } else { x_1_p0 = zero; x_1_p1 = zero; } } if constexpr (kNumQueries >= 3) { if (hn::ExtractLane(old_d_vf, 2) > 0.0f && scales[2] != 1.0f) { const VF one_over_d_2 = hn::Set(df, tmp_one_over_d[2]); x_2_p0 = hn::Mul(x_2_p0, one_over_d_2); x_2_p1 = hn::Mul(x_2_p1, one_over_d_2); } else { x_2_p0 = zero; x_2_p1 = zero; } } if constexpr (kNumQueries >= 4) { if (hn::ExtractLane(old_d_vf, 3) > 0.0f && scales[3] != 1.0f) { const VF one_over_d_3 = hn::Set(df, tmp_one_over_d[3]); x_3_p0 = hn::Mul(x_3_p0, one_over_d_3); x_3_p1 = hn::Mul(x_3_p1, one_over_d_3); } else { x_3_p0 = zero; x_3_p1 = zero; } } } // Implements flash attention for a strip of tiles of size 1, 4 or 8 query // vectors by 2NF positions in K. // It iterates through tiles in K from `params.min_start_pos / 2NF * 2NF` up to // `params.max_last_pos` (rounded up to the nearest multiple of 2NF). // Masking allows each row within a tile to have a different start and end // position. // // @param params FlashAttentionParams containing the extent of the strip and // size of the tiles. // @param q The query matrix [batch_size * q_heads, qkv_dim] in BF16 format. // @param k Key matrix from KV cache. K is always pre-transposed to shape: // [seq_len / 2kNF, layers * kv_heads * qkv_dim/2 * 2kNF * 2], // where the /2, *2 represents that pairs of qkv_dim elements are kept // together to make best use of BF16 dot product instructions. // @param v Value matrix [seq_len, qkv_dim] from KV cache. // @param layer_idx The index of the current transformer layer. // @param activations Attention configurations and buffers. // @param att_out Output buffer for attention results. // @param ctx Threading context. // @param worker Worker thread index. template Tile4FlashState TileFlashAttention148( const FlashAttentionParams& params, const MatPtrT& q, const MatPtrT& k, const MatPtrT& v, const size_t layer_idx, const AttentionActivationsPtrs& activations, MatPtrT& att_out, size_t qkv_dim, ThreadingContext& ctx, const size_t worker, AttentionImpl attention_impl) { constexpr Zones kZone = kVTileSize == 8 ? Zones::kFlashAttentionTileFlashAttention8 : (kVTileSize == 4 ? Zones::kFlashAttentionTileFlashAttention4 : Zones::kFlashAttentionTileFlashAttention1); GCPP_ZONE(ctx, worker, kZone); using DF = hn::ScalableTag; const DF df; using VF = hn::Vec; float att_cap = activations.config.att_cap; float one_over_cap = att_cap > 0.0f ? 1.0f / att_cap : 0.0f; const size_t kHTileSize = 2 * hn::Lanes(df); float scales[kVTileSize]; for (size_t i = 0; i < kVTileSize; ++i) { hwy::ZeroBytes(att_out.Row(0) + params.out_offsets[i], qkv_dim * sizeof(att_out.Row(0)[0])); } Tile4FlashState state; size_t position = params.min_start_pos / kHTileSize * kHTileSize; while (position <= params.max_last_pos) { // Each pair of vectors covers 2NF positions in K, with up to 8 pairs of // vectors covering 1, 4 or 8 queries. VF x00, x01; VF HWY_MAYBE_UNUSED x10, x11; VF HWY_MAYBE_UNUSED x20, x21; VF HWY_MAYBE_UNUSED x30, x31; VF HWY_MAYBE_UNUSED x40, x41; VF HWY_MAYBE_UNUSED x50, x51; VF HWY_MAYBE_UNUSED x60, x61; VF HWY_MAYBE_UNUSED x70, x71; constexpr size_t kMaxNF = hn::MaxLanes(df); size_t v_pos[2 * kMaxNF]; for (size_t i = 0; i < kHTileSize; ++i) { v_pos[i] = activations.div_seq_len.Remainder(position + i); } if constexpr (IsF32()) { if constexpr (HWY_NATIVE_DOT_BF16) { QDotKTile148FloatNative(df, q.Row(0), params.out_offsets, qkv_dim / 2, k, position, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41, x50, x51, x60, x61, x70, x71); } else { QDotKTile148FloatNotNative( df, q.Row(0), params.out_offsets, qkv_dim / 2, k, position, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41, x50, x51, x60, x61, x70, x71); } } else { if constexpr (HWY_NATIVE_DOT_BF16) { QDotKTile148BF16Native(df, q.Row(0), params.q_offsets, qkv_dim / 2, k, position, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41, x50, x51, x60, x61, x70, x71); } else { QDotKTile148BF16NotNative( df, q.Row(0), params.q_offsets, qkv_dim / 2, k, position, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41, x50, x51, x60, x61, x70, x71); } } if (att_cap > 0.0f) { // Compute tanh(x / cap) * cap, being LogitsSoftCap on the tile. ApplySoftCap(df, att_cap, one_over_cap, x00, x10, x20, x30, x40, x50, x60, x70); ApplySoftCap(df, att_cap, one_over_cap, x01, x11, x21, x31, x41, x51, x61, x71); } scales[0] = DoubleFlashAttentionRowVector( df, params.start_pos[0], position, params.last_pos[0], x00, x01, state.row_states[0].max, state.row_states[0].d); if constexpr (kVTileSize >= 4) { scales[1] = DoubleFlashAttentionRowVector( df, params.start_pos[1], position, params.last_pos[1], x10, x11, state.row_states[1].max, state.row_states[1].d); scales[2] = DoubleFlashAttentionRowVector( df, params.start_pos[2], position, params.last_pos[2], x20, x21, state.row_states[2].max, state.row_states[2].d); scales[3] = DoubleFlashAttentionRowVector( df, params.start_pos[3], position, params.last_pos[3], x30, x31, state.row_states[3].max, state.row_states[3].d); MulByConstAndAddVT4Mem(df, scales, x00, x01, x10, x11, x20, x21, x30, x31, v, v_pos, params.max_last_pos + 1 - position, att_out.Row(0), params.out_offsets, qkv_dim); } else { MulByConstAndAddVT1Mem(df, scales, x00, x01, v, v_pos, params.max_last_pos + 1 - position, att_out.Row(0), params.out_offsets, qkv_dim); } if constexpr (kVTileSize >= 8) { scales[4] = DoubleFlashAttentionRowVector( df, params.start_pos[4], position, params.last_pos[4], x40, x41, state.row_states[4].max, state.row_states[4].d); scales[5] = DoubleFlashAttentionRowVector( df, params.start_pos[5], position, params.last_pos[5], x50, x51, state.row_states[5].max, state.row_states[5].d); scales[6] = DoubleFlashAttentionRowVector( df, params.start_pos[6], position, params.last_pos[6], x60, x61, state.row_states[6].max, state.row_states[6].d); scales[7] = DoubleFlashAttentionRowVector( df, params.start_pos[7], position, params.last_pos[7], x70, x71, state.row_states[7].max, state.row_states[7].d); MulByConstAndAddVT4Mem(df, scales + 4, x40, x41, x50, x51, x60, x61, x70, x71, v, v_pos, params.max_last_pos + 1 - position, att_out.Row(0), params.out_offsets + 4, qkv_dim); } position += kHTileSize; } return state; } // The vertical tile size is determined by the ability to use tiling and the // target_parallelism. In practice the possible tile sizes in order of // preference for efficiency are 8, 4, 1. The final tile size is chosen to be // the largest possible that allows for target_parallelism parallel tasks. size_t GetVTileSize(size_t kNF, size_t num_head_groups, size_t num_tokens, size_t total_tasks, size_t target_parallelism) { const size_t kMaxEqualK = num_head_groups * num_tokens; if (total_tasks / k8xNFVTileSize >= target_parallelism && kMaxEqualK >= k8xNFVTileSize && kNF >= k8xNFVTileSize) { return k8xNFVTileSize; } if (total_tasks / k4xNFVTileSize >= target_parallelism && kMaxEqualK >= k4xNFVTileSize && kNF >= k4xNFVTileSize) { return k4xNFVTileSize; } return 1; } // Clears and fills the params vector with FlashAttentionParams for the given // num_tokens, target_parallelism, and layer_idx. Computes tile sizes and // offsets for each tile to achieve target_parallelism. void ComputeFlashParams(size_t num_tokens, const size_t target_parallelism, size_t layer_idx, AttentionActivationsPtrs& activations, QBatch& qbatch, AttentionImpl attention_impl, std::vector& params) { const LayerConfig& layer_config = activations.config.layer_configs[layer_idx]; const hwy::Divisor div_qbatch(qbatch.Size()); const size_t qkv_dim = layer_config.qkv_dim; using DF = hn::ScalableTag; const DF df; const size_t kNF = hn::Lanes(df); // A "head group" in the context of GQA refers to a collection of query // heads that share the same key and value heads. const size_t kHeadGroups = layer_config.heads / layer_config.kv_heads; const size_t cache_layer_size = layer_config.CacheLayerSize(); const size_t token_batch = num_tokens * div_qbatch.GetDivisor(); const size_t total_tasks = token_batch * layer_config.heads; size_t kVTileSize = GetVTileSize(kNF, kHeadGroups, num_tokens, total_tasks, target_parallelism); // All layers should have the same number of heads. HWY_DASSERT(activations.div_heads.GetDivisor() == layer_config.heads); // To maximize adjacent tasks with the same kv matrices, task index is encoded // thus: [qi][kv_head][batch_idx][head_group]. Note that the head index is // split into kv_head and head_group, since the head_group does not affect // the KV matrices, and kv_head does. batch_idx does not affect the KV // matrices, but does affect the last position in the sequence. qi affects // everything. params.clear(); for (uint32_t qi = 0; qi < div_qbatch.GetDivisor(); ++qi) { for (uint32_t kv_head = 0; kv_head < layer_config.kv_heads; ++kv_head) { const size_t head_offset = kv_head * qkv_dim * 2; const uint32_t kv_offset = layer_idx * cache_layer_size + head_offset; params.push_back(FlashAttentionParams{ .qi_index = qi, .kv_offset = kv_offset, }); for (uint32_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = qbatch.Pos(qi) + batch_idx; const size_t start_pos = StartPos(pos, activations.config, layer_idx); size_t last = pos; const size_t prefix_end = qbatch.PrefixEnd(qi); if (prefix_end > 0 && prefix_end - 1 > last) { // last_pos is inclusive. last = prefix_end - 1; } for (size_t head_group = 0; head_group < kHeadGroups; ++head_group) { size_t tasks_remaining = kHeadGroups - head_group + kHeadGroups * (num_tokens - 1 - batch_idx); // We want to fill a tile of size kVTileSize or k4xNFVTileSize if // smaller, otherwise everything is singles to the next head group. size_t tasks_required = params.back().v_tile_size < k4xNFVTileSize ? k4xNFVTileSize : kVTileSize; if (params.back().v_tile_size + tasks_remaining < tasks_required || params.back().v_tile_size == kVTileSize) { // We don't have enough tasks remaining to fill a tile, or the // current tile is full so start new tile. params.push_back(FlashAttentionParams{ .qi_index = qi, .kv_offset = kv_offset, }); } const size_t head = head_group + kHeadGroups * kv_head; const size_t tq_idx = div_qbatch.GetDivisor() * batch_idx + qi; auto& param = params.back(); size_t offset = param.v_tile_size; param.q_offsets[offset] = activations.q_bf.Row(tq_idx) + head * qkv_dim - activations.q_bf.Row(0); param.out_offsets[offset] = activations.att_out.Row(tq_idx) + head * qkv_dim - activations.att_out.Row(0); param.tq_idx[offset] = tq_idx; param.start_pos[offset] = start_pos; param.min_start_pos = HWY_MIN(param.min_start_pos, start_pos); param.last_pos[offset] = last; param.max_last_pos = HWY_MAX(param.max_last_pos, last); ++param.v_tile_size; } } } } } // Returns the maximum number of tiles needed for any query in the batch. size_t GetMaxTiles(const std::vector& params, const size_t kHTileSize) { size_t max_tiles = 0; for (const auto& param : params) { size_t start = param.min_start_pos / kHTileSize; size_t last = param.max_last_pos / kHTileSize; max_tiles = HWY_MAX(last + 1 - start, max_tiles); } return max_tiles; } // Splits params into smaller k-strips to allow for more parallelism. // The strips are of size num_tiles_per_task * kHTileSize. // split_params is cleared and filled with the split tasks. void SplitTasksByKPos(std::vector& params, const size_t kHTileSize, const size_t num_tiles_per_task, const size_t out_stride, std::vector& split_params) { split_params.clear(); for (auto& param : params) { param.split_index = split_params.size(); size_t start = param.min_start_pos / kHTileSize; size_t last = param.max_last_pos / kHTileSize; for (size_t tile_pos = start; tile_pos <= last; tile_pos += num_tiles_per_task) { auto& split_param = split_params.emplace_back(param); split_param.i_of_n = (tile_pos - start) / num_tiles_per_task; uint32_t tile_last = (tile_pos + num_tiles_per_task) * kHTileSize - 1; if (tile_last < param.max_last_pos) { split_param.max_last_pos = tile_last; for (auto& last_pos : split_param.last_pos) { last_pos = std::min(last_pos, tile_last); } } uint32_t tile_start = tile_pos * kHTileSize; if (tile_start > param.min_start_pos) { split_param.min_start_pos = tile_start; for (auto& start_pos : split_param.start_pos) { start_pos = std::max(start_pos, tile_start); } } if (split_param.i_of_n > 0) { for (size_t i = 0; i < split_param.v_tile_size; ++i) { split_param.tq_idx[i] = param.tq_idx[i] * AttentionActivations::kThreadReplicationFactor + split_param.i_of_n - 1; split_param.out_offsets[i] = param.out_offsets[i] + (split_param.tq_idx[i] - param.tq_idx[i]) * out_stride; } } } } } // Clears and fills activations.flash_params with FlashAttentionParams for the // given num_tokens, target_parallelism, and layer_idx. Computes tile sizes and // offsets for each tile to achieve target_parallelism. // If the parallelism is insufficient for this processor type, and the sequence // length is sufficient, the tiles are upgraded to k4xNFVTileSize and the tasks // are split along the k positions to achieve the desired parallelism. // If splitting was required, returns that factor by which the tiles were // upgraded, k4xNFVTileSize, otherwise returns 0. uint32_t ComputeAndSplitFlashParams(const size_t kNF, const size_t num_tokens, const size_t target_parallelism, size_t layer_idx, AttentionActivationsPtrs& activations, QBatch& qbatch, ThreadingContext& ctx, AttentionImpl attention_impl) { ComputeFlashParams(num_tokens, target_parallelism, layer_idx, activations, qbatch, attention_impl, activations.flash_params); if (activations.flash_params.size() < ctx.pools.MaxWorkers()) { // Insufficient parallelism for this processor type. Try splitting along the // k positions. size_t max_tiles = GetMaxTiles(activations.flash_params, kNF); size_t desired_tiles_per_task = hwy::DivCeil( activations.flash_params.size() * max_tiles, ctx.pools.MaxWorkers()); // The cost of combining split tasks is significant, so we want a minimum // number of tiles per task, and we want to use k4xNFVTileSize if possible. constexpr size_t kMinTilesPerTask = 4; if (desired_tiles_per_task >= k4xNFVTileSize * kMinTilesPerTask) { // We can afford to use k4xNFVTileSize vertically, so recompute params. ComputeFlashParams(num_tokens, activations.flash_params.size() / k4xNFVTileSize, layer_idx, activations, qbatch, attention_impl, activations.flash_params); desired_tiles_per_task = hwy::DivCeil(desired_tiles_per_task, k4xNFVTileSize); SplitTasksByKPos(activations.flash_params, kNF, desired_tiles_per_task, activations.att_out_reps.Stride(), activations.split_flash_params); return k4xNFVTileSize; } } return 0; } // Combines results from split tasks, processing kNumNF * NF qkv values where // kNumNF can be 1 4 or 16. This enables the intermediate results to be held in // registers, which speeds up the combination step significantly. template void CombineSplitTasks1416(hwy::Span params, size_t tile_pos, size_t qkv_offset, AttentionActivationsPtrs& activations) { using DF = hn::ScalableTag; const DF df; using VF = hn::Vec; const size_t kNF = hn::Lanes(df); float overall_m = params[0].end_state.row_states[tile_pos].max; float overall_d = params[0].end_state.row_states[tile_pos].d; float* HWY_RESTRICT att_out = activations.att_out.Row(0) + params[0].out_offsets[tile_pos] + qkv_offset; VF result_0 = hn::Load(df, att_out); VF result_1, result_2, result_3, result_4, result_5, result_6, result_7; VF result_8, result_9, result_10, result_11, result_12, result_13, result_14; VF result_15; if constexpr (kNumNF > 1) { result_1 = hn::Load(df, att_out + kNF); result_2 = hn::Load(df, att_out + 2 * kNF); result_3 = hn::Load(df, att_out + 3 * kNF); } if constexpr (kNumNF == 16) { result_4 = hn::Load(df, att_out + 4 * kNF); result_5 = hn::Load(df, att_out + 5 * kNF); result_6 = hn::Load(df, att_out + 6 * kNF); result_7 = hn::Load(df, att_out + 7 * kNF); result_8 = hn::Load(df, att_out + 8 * kNF); result_9 = hn::Load(df, att_out + 9 * kNF); result_10 = hn::Load(df, att_out + 10 * kNF); result_11 = hn::Load(df, att_out + 11 * kNF); result_12 = hn::Load(df, att_out + 12 * kNF); result_13 = hn::Load(df, att_out + 13 * kNF); result_14 = hn::Load(df, att_out + 14 * kNF); result_15 = hn::Load(df, att_out + 15 * kNF); } for (size_t i = 1; i < params.size() && params[i].i_of_n > 0; ++i) { float m = params[i].end_state.row_states[tile_pos].max; float d = params[i].end_state.row_states[tile_pos].d; float new_m = std::max(overall_m, m); // Scale factor for existing total given the change in max. float old_scale = overall_d * std::exp(overall_m - new_m); // Scale factor for new group to add. float new_scale = d * std::exp(m - new_m); float new_d = old_scale + new_scale; float one_over_d = 1.0f / new_d; old_scale *= one_over_d; new_scale *= one_over_d; overall_m = new_m; overall_d = new_d; float* HWY_RESTRICT att_in = activations.att_out_reps.Row(0) + params[i].out_offsets[tile_pos] + qkv_offset; VF old_scale_vec = hn::Set(df, old_scale); VF new_scale_vec = hn::Set(df, new_scale); result_0 = hn::Mul(result_0, old_scale_vec); result_0 = hn::MulAdd(hn::Load(df, att_in), new_scale_vec, result_0); if constexpr (kNumNF > 1) { result_1 = hn::Mul(result_1, old_scale_vec); result_2 = hn::Mul(result_2, old_scale_vec); result_3 = hn::Mul(result_3, old_scale_vec); result_1 = hn::MulAdd(hn::Load(df, att_in + kNF), new_scale_vec, result_1); result_2 = hn::MulAdd(hn::Load(df, att_in + 2 * kNF), new_scale_vec, result_2); result_3 = hn::MulAdd(hn::Load(df, att_in + 3 * kNF), new_scale_vec, result_3); } if constexpr (kNumNF == 16) { result_4 = hn::Mul(result_4, old_scale_vec); result_5 = hn::Mul(result_5, old_scale_vec); result_6 = hn::Mul(result_6, old_scale_vec); result_7 = hn::Mul(result_7, old_scale_vec); result_8 = hn::Mul(result_8, old_scale_vec); result_9 = hn::Mul(result_9, old_scale_vec); result_10 = hn::Mul(result_10, old_scale_vec); result_11 = hn::Mul(result_11, old_scale_vec); result_12 = hn::Mul(result_12, old_scale_vec); result_13 = hn::Mul(result_13, old_scale_vec); result_14 = hn::Mul(result_14, old_scale_vec); result_15 = hn::Mul(result_15, old_scale_vec); result_4 = hn::MulAdd(hn::Load(df, att_in + 4 * kNF), new_scale_vec, result_4); result_5 = hn::MulAdd(hn::Load(df, att_in + 5 * kNF), new_scale_vec, result_5); result_6 = hn::MulAdd(hn::Load(df, att_in + 6 * kNF), new_scale_vec, result_6); result_7 = hn::MulAdd(hn::Load(df, att_in + 7 * kNF), new_scale_vec, result_7); result_8 = hn::MulAdd(hn::Load(df, att_in + 8 * kNF), new_scale_vec, result_8); result_9 = hn::MulAdd(hn::Load(df, att_in + 9 * kNF), new_scale_vec, result_9); result_10 = hn::MulAdd(hn::Load(df, att_in + 10 * kNF), new_scale_vec, result_10); result_11 = hn::MulAdd(hn::Load(df, att_in + 11 * kNF), new_scale_vec, result_11); result_12 = hn::MulAdd(hn::Load(df, att_in + 12 * kNF), new_scale_vec, result_12); result_13 = hn::MulAdd(hn::Load(df, att_in + 13 * kNF), new_scale_vec, result_13); result_14 = hn::MulAdd(hn::Load(df, att_in + 14 * kNF), new_scale_vec, result_14); result_15 = hn::MulAdd(hn::Load(df, att_in + 15 * kNF), new_scale_vec, result_15); } } hn::Store(result_0, df, att_out); if constexpr (kNumNF > 1) { hn::Store(result_1, df, att_out + kNF); hn::Store(result_2, df, att_out + 2 * kNF); hn::Store(result_3, df, att_out + 3 * kNF); } if constexpr (kNumNF == 16) { hn::Store(result_4, df, att_out + 4 * kNF); hn::Store(result_5, df, att_out + 5 * kNF); hn::Store(result_6, df, att_out + 6 * kNF); hn::Store(result_7, df, att_out + 7 * kNF); hn::Store(result_8, df, att_out + 8 * kNF); hn::Store(result_9, df, att_out + 9 * kNF); hn::Store(result_10, df, att_out + 10 * kNF); hn::Store(result_11, df, att_out + 11 * kNF); hn::Store(result_12, df, att_out + 12 * kNF); hn::Store(result_13, df, att_out + 13 * kNF); hn::Store(result_14, df, att_out + 14 * kNF); hn::Store(result_15, df, att_out + 15 * kNF); } } // Recombines results from split tasks, activations.att_out_reps -> // activations.att_out. Instead of repeatedly calling MultiplyByConstAndAdd, // which reads/writes the sum each time, the result is kept entirely in // registers, and the task is split into 16NF, 4NF, and NF chunks, so that there // are enough registers to hold the intermediate results. void CombineSplitTasks(size_t qkv_dim, uint32_t tile_factor, AttentionActivationsPtrs& activations, ThreadingContext& ctx) { GCPP_ZONE(ctx, 0, Zones::kFlashAttentionCombineSplit); using DF = hn::ScalableTag; const DF df; const size_t kNF = hn::Lanes(df); uint32_t num_16 = qkv_dim / (16 * kNF); uint32_t num_4 = (qkv_dim - kNF * 16 * num_16) / (4 * kNF); uint32_t num_1 = hwy::DivCeil(qkv_dim - kNF * (16 * num_16 + 4 * num_4), kNF); uint32_t tasks_per_qkv = num_16 + num_4 + num_1; ParallelFor( Parallelism::kFlat, activations.flash_params.size() * tasks_per_qkv * tile_factor, ctx, /*cluster_idx=*/0, Callers::kFlashAttention, [&](size_t p, size_t worker) { uint32_t tile = p / tasks_per_qkv; uint32_t p_idx = activations.flash_params[tile / tile_factor].split_index; const auto& param = activations.split_flash_params[p_idx]; size_t remaining_params = activations.split_flash_params.size() - p_idx; tile %= tile_factor; if (tile >= param.v_tile_size) return; int32_t qkv_task = p % tasks_per_qkv; if (qkv_task < num_16) { uint32_t qkv_offset = qkv_task * 16 * kNF; CombineSplitTasks1416<16>( hwy::Span(¶m, remaining_params), tile, qkv_offset, activations); } else if (qkv_task < num_16 + num_4) { uint32_t qkv_offset = (num_16 * 16 + (qkv_task - num_16) * 4) * kNF; CombineSplitTasks1416<4>( hwy::Span(¶m, remaining_params), tile, qkv_offset, activations); } else { uint32_t qkv_offset = (num_16 * 16 + num_4 * 4 + (qkv_task - num_16 - num_4)) * kNF; CombineSplitTasks1416<1>( hwy::Span(¶m, remaining_params), tile, qkv_offset, activations); } }); } // The nominal aim of attention is to combine 3 inputs Q[L,D], K[L,D], V[L,D] // into a single output O[L,D]. // Conventional attention first computes A[L,L] = Q . KT // followed by A = softmax(A) (over invididual rows). // Then A is multiplied by V to get O[L,D]. // For each row of O, this takes a read of one row of Q L times, all of K, // 3 write/reads of one row of A, read all of V, and read/write the one row of O // L times. Ignoring the computation for now, and focusing just on memory, // the one row of O takes L(4D+3) reads and L(D+3) writes. // For the whole of Q, this is L^2(4D+3) reads and L^2(D+3) writes. // // Flash attention fuses these operations together, and operates on tiles of // n Q rows x NF K positions, accumulated in n registers, where n is in // {1, 4, 8} and NF is the number of float lanes in a register, being 16 for // AVX3. This reduces the number of reads of Q by NF and reads of K by n. The // softmax is converted to streaming form using the algorithm from: // https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf, // which eliminates the need to store A to memory. The accumulated Q.KT result // is passed via the streaming softmax directly to the A.V step. // To make the dot product computation more efficient, Q, K, and V are stored // as BF16 and K is transposed to shape: // [seq_len / NF, layers * kv_heads * qkv_dim/2 * NF * 2], where the /2, *2 // represents that pairs of qkv_dim elements are kept together to make best // use of BF16 dot product instructions, where each pair of adjacent BF16 // values from Q and K are mul-added into a single F32 result. // // A further complication is that real attention is not as simple as documented // in the paper and above. There are multiple query heads, differing KV, and // different sequence lengths, and the difference between prefill and decode, // so a lot of the work in FlashAttention is making sure that a collection of q // rows with the same KV and sequence length are grouped together so that the // largest possible tiles can be used. This is dealt with by the // ComputeAndSplitFlashParams() function. void FlashAttention(const size_t num_tokens, const size_t target_parallelism, const size_t layer_idx, const MatPtr& query_norm_scale, AttentionActivationsPtrs& activations, QBatch& qbatch, ThreadingContext& ctx, AttentionImpl attention_impl) { GCPP_ZONE(ctx, 0, Zones::kFlashAttentionInclusive); RMSNormAndPositionalEncoding(num_tokens, qbatch, activations.q, query_norm_scale, layer_idx, activations, ctx); const LayerConfig& layer_config = activations.config.layer_configs[layer_idx]; const size_t qkv_dim = layer_config.qkv_dim; const size_t seq_len = static_cast(activations.div_seq_len.GetDivisor()); using DF = hn::ScalableTag; const DF df; const size_t kNF = hn::Lanes(df); // Compress q to q_bf. // TODO(rays): Move this into RMSNormAndPositionalEncoding(). ParallelFor( Parallelism::kWithinCluster, activations.q.Rows(), ctx, /*cluster_idx=*/0, Callers::kFlashAttention, [&](size_t row, size_t worker) { CompressPerThread tls; const hn::ScalableTag df; CompressTraits::Compress( df, activations.q.Row(row), activations.q.Cols(), tls, MakeSpan(activations.q_bf.Row(row), activations.q_bf.Cols()), 0); }); int tile_factor = ComputeAndSplitFlashParams(kNF, num_tokens, target_parallelism, layer_idx, activations, qbatch, ctx, attention_impl); auto& params = tile_factor >= 1 ? activations.split_flash_params : activations.flash_params; size_t num_tasks = params.size(); // For each head/token/query, compute fused flash Q.K, softmax and weighted V. const auto func = [&](const size_t task, size_t worker) HWY_ATTR { GCPP_ZONE(ctx, worker, Zones::kFlashAttentionFlashAttention); auto& param = params[task]; auto& kv_cache = qbatch.KV(param.qi_index).kv_cache; auto& kT_cache = qbatch.KV(param.qi_index).k_cache; MatPtrT kT("k_T_view", Extents2D(hwy::DivCeil(seq_len, 2 * kNF), qkv_dim * 2 * kNF)); kT.SetPtr(kT_cache.Row(0) + param.kv_offset * kNF, kT_cache.Stride()); MatPtrT v("v_view", Extents2D(seq_len, qkv_dim)); v.SetPtr(kv_cache.Row(0) + param.kv_offset + qkv_dim, kv_cache.Stride()); auto& vT_cache = qbatch.KV(param.qi_index).v_cache; MatPtrT vT("v_T_view", Extents2D(hwy::DivCeil(seq_len, 2 * kNF), qkv_dim * 2 * kNF)); vT.SetPtr(vT_cache.Row(0) + param.kv_offset * kNF, vT_cache.Stride()); MatPtrT& att_out = param.i_of_n == 0 ? activations.att_out : activations.att_out_reps; if (param.v_tile_size == k8xNFVTileSize) { param.end_state = TileFlashAttention148( param, activations.q_bf, kT, vT, layer_idx, activations, att_out, qkv_dim, ctx, worker, attention_impl); } else if (param.v_tile_size == k4xNFVTileSize) { param.end_state = TileFlashAttention148( param, activations.q_bf, kT, vT, layer_idx, activations, att_out, qkv_dim, ctx, worker, attention_impl); } else { param.end_state = TileFlashAttention148<1>( param, activations.q_bf, kT, vT, layer_idx, activations, att_out, qkv_dim, ctx, worker, attention_impl); } }; { PROFILER_ZONE("Gen.FlashAttention.ForkJoin"); // Full parallelism is helpful, SmallParallelFor is insufficient. HierarchicalParallelFor(num_tasks, ctx, Callers::kFlashAttention, func); } if (tile_factor >= 1) { // Run the flash attention correction on the partial outputs. CombineSplitTasks(qkv_dim, tile_factor, activations, ctx); } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE();