# WIP - DO NOT MERGE from collections import defaultdict import torch from gemma import config from gemma import model as gemma_model import numpy as np TRANSFORMATIONS = defaultdict(lambda: lambda x: x, { "embedder.weight": lambda x: np.concatenate([np.zeros([128, 2048]), x], 0), "self_attn.qkv_proj.weight": lambda x: x, "mlp.up_proj.weight" : lambda x: x, "mlp.down_proj.weight" : lambda x: x, }) def param_names(): """Return parameter names in the order they are expected for deserialization.""" # note *weight_scaler params are ignored in the forward computation unless # quantization is being used. # # since we are working with the full precision weights as input, don't # include these in the parameters being iterated over. # fmt: off names = [ "embedder.weight", # embedder_input_embedding (vocab=256000, model_dim=2048) -> (vocab=256128, model_dim=2048) "model.norm.weight" # final_norm_scale (model_dim=2048) ] layer_params = [ # TODO(austinvhuang): transpositions here ... "self_attn.qkv_proj.weight", # attn_vec_einsum_w (2560, 2048) -> (heads=8, model_dim=2048, qkv_dim=256) "self_attn.o_proj.weight", # qkv_einsum_w (2048, 2048) -> (heads=8, qkv=3, qkv_dim=256, model_dim=2048) # these are the same without any change "mlp.gate_proj.weight", # gating_einsum_w (16384, 2048) => (gate/up=2, hidden=16384, model_dim=2048) "mlp.up_proj.weight", "mlp.down_proj.weight", # linear_w (2048, 16384) => (model_dim=2048, hidden=16384) "input_layernorm.weight", # pre_attention_norm_scale (model_dim=2048) "post_attention_layernorm.weight", # pre_ffw_norm_scale (model_dim=2048) ] # fmt: on for layer in range(18): for layer_param in layer_params: names = names + [f"model.layers.{layer}.{layer_param}"] return names def convert_weights(): # TODO(austinvhuang): parameterize paths output_file = "2bit-f32.sbs" model_config = config.get_model_config("2b") model_config.dtype = "float32" model_config.quant = "store_true" model_config.tokenizer = "models/tokenizer.spm" device = torch.device("cpu") torch.set_default_dtype(torch.float) model = gemma_model.GemmaForCausalLM(model_config) model.load_weights("models/gemma-2b-it.ckpt") model_dict = dict(model.named_parameters()) param_order = param_names() print("Writing parameters ...") with open(output_file, "wb") as bin_handle: for name in param_order: arr = model_dict[name].detach().numpy() arr = TRANSFORMATIONS[name](arr) # TODO(austinvhuang): reshapes print(f" {name : <60}{str(arr.shape)}") arr.flatten().astype(np.float32).tofile(bin_handle) if __name__ == "__main__": convert_weights() print("Done")